Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biodivers Data J ; 8: e60027, 2020.
Article in English | MEDLINE | ID: mdl-33343218

ABSTRACT

BACKGROUND: Herbivorous insects represent a major fraction of global biodiversity and the relationships they have established with their food plants range from strict specialists to broad generalists. Our knowledge of these relationships is of primary importance to basic (e.g. the study of insect ecology and evolution) and applied biology (e.g. monitoring of pest or invasive species) and yet remains very fragmentary and understudied. In Lepidoptera, caterpillars of families Saturniidae and Sphingidae are rather well known and considered to have adopted contrasting preferences in their use of food plants. The former are regarded as being rather generalist feeders, whereas the latter are more specialist. NEW INFORMATION: To assemble and synthesise the vast amount of existing data on food plants of Lepidoptera families Saturniidae and Sphingidae, we combined three major existing databases to produce a dataset collating more than 26,000 records for 1256 species (25% of all species) in 121 (67%) and 167 (81%) genera of Saturniidae and Sphingidae, respectively. This dataset is used here to document the level of polyphagy of each of these genera using summary statistics, as well as the calculation of a polyphagy score derived from the analysis of Phylogenetic Diversity of the food plants used by the species in each genus.

2.
Sci Rep ; 10(1): 19346, 2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33168844

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 10(1): 10071, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32572098

ABSTRACT

In several highly specialized plant-insect interactions, scent-mediated specificity of pollinator attraction is directed by the emission and detection of volatile organic compounds (VOCs). Although some plants engaged in such interactions emit singular compounds, others emit mixtures of VOCs commonly emitted by plants. We investigated the chemical ecological bases of host plant recognition in the nursery pollination mutualism between the dioecious Ficus carica and its specific pollinator Blastophaga psenes. Using Y-tube olfactometer tests, we show that B. psenes females are attracted by VOCs of receptive figs of both sexes and do not exhibit preference for VOCs of either male or female figs. Electrophysiological tests and chemical analysis revealed that of all the VOCs emitted by receptive figs, only five were found to be active on female antennae. Behavioural tests show that, in contrast to VOCs presented alone, only a blend with a particular proportion of four of these VOCs is as attractive as the odour of receptive figs, and that if there is a very small change in this blend proportion, the pollinator is no longer attracted. This study revealed that in highly specialized mutualistic interactions specificity could be mediated by a particular blend of common compounds emitted by plants.

4.
Ecol Evol ; 9(20): 11657-11671, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31695876

ABSTRACT

Climate adaptation has major consequences in the evolution and ecology of all living organisms. Though phytophagous insects are an important component of Earth's biodiversity, there are few studies investigating the evolution of their climatic preferences. This lack of research is probably because their evolutionary ecology is thought to be primarily driven by their interactions with their host plants. Here, we use a robust phylogenetic framework and species-level distribution data for the conifer-feeding aphid genus Cinara to investigate the role of climatic adaptation in the diversity and distribution patterns of these host-specialized insects. Insect climate niches were reconstructed at a macroevolutionary scale, highlighting that climate niche tolerance is evolutionarily labile, with closely related species exhibiting strong climatic disparities. This result may suggest repeated climate niche differentiation during the evolutionary diversification of Cinara. Alternatively, it may merely reflect the use of host plants that occur in disparate climatic zones, and thus, in reality the aphid species' fundamental climate niches may actually be similar but broad. Comparisons of the aphids' current climate niches with those of their hosts show that most Cinara species occupy the full range of the climatic tolerance exhibited by their set of host plants, corroborating the hypothesis that the observed disparity in Cinara species' climate niches can simply mirror that of their hosts. However, 29% of the studied species only occupy a subset of their hosts' climatic zone, suggesting that some aphid species do indeed have their own climatic limitations. Our results suggest that in host-specialized phytophagous insects, host associations cannot always adequately describe insect niches and abiotic factors must be taken into account.

5.
Mol Ecol Resour ; 19(3): 702-710, 2019 May.
Article in English | MEDLINE | ID: mdl-30758892

ABSTRACT

Target enrichment is increasingly used for genotyping of plant and animal species or to better understand the evolutionary history of important lineages through the inference of statistically robust phylogenies. Limitations to routine target enrichment are both the complexity of current protocols and low input DNA quantity. Thus, working with tiny organisms such as microarthropods can be challenging. Here, we propose easy to set up optimizations for DNA extraction and library preparation prior to target enrichment. Prepared libraries were used to capture 1,432 ultraconserved elements (UCEs) from microhymenoptera (Chalcidoidea), which are among the tiniest insects on Earth and the most commercialized worldwide for biological control purposes. Results show no correlation between input DNA quantities (1.8-250 ng, 0.4 ng with an extra whole genome amplification step) and the number of sequenced UCEs on an Illumina MiSeq. Phylogenetic inferences highlight the potential of UCEs to solve relationships within the families of chalcid wasps, which has not been achieved so far. The protocol (library preparation + target enrichment) allows processing 96 specimens in five working days, by a single person, without requiring the use of expensive robotic molecular biology platforms, which could help to generalize the use of target enrichment for minute specimens.


Subject(s)
DNA/isolation & purification , Entomology/methods , Gene Library , Hymenoptera/classification , Hymenoptera/genetics , Animals , DNA/chemistry , DNA/genetics , Genotype , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...