Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 264: 115398, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37634482

ABSTRACT

Pesticide exposure is an important driver of bee declines. Laboratory toxicity tests provide baseline information on the potential effects of pesticides on bees, but current risk assessment schemes rely on one species, the highly social honey bee, Apis mellifera, and there is uncertainty regarding the extent to which this species is a suitable surrogate for other pollinators. For this reason, Osmia cornuta and Osmia bicornis have been proposed as model solitary bee species in the EU risk assessment scheme. The use of solitary bees in risk assessment requires the development of new methodologies adjusted to the biology of these species. For example, oral dosing methods used with honey bees cannot be readily applied to solitary bees due to differences in feeding behaviour and social interactions. In this study, we describe the "petal method", a laboratory feeding method, and validate its use in acute and chronic exposure oral tests with Osmia spp. We conducted five experiments in which we compared the performance of several artificial flowers combining visual and olfactory cues against the petal method, or in which variations of the petal method were confronted. We then use the results of these experiments to optimize the feeding arenas and propose standardized methods for both acute and chronic exposure tests. The petal method provides high levels of feeding success, thus reducing the number of bees needed. It works with a wide variety of petal species and with both female and male Osmia spp., thus ensuring reproducibility across studies. To validate the use of the petal method in ecotoxicology tests, we assess the toxicity of a standard reference insecticide, dimethoate, in O. cornuta adults and determine LD50 values for this species. The petal method should facilitate the inclusion of solitary bees in risk assessment schemes therefore increasing the protection coverage of pesticide regulation.


Subject(s)
Insecticides , Pesticides , Male , Bees , Female , Animals , Pesticides/toxicity , Reproducibility of Results , Insecticides/toxicity , Flowers , Toxicity Tests
2.
Bull Entomol Res ; 110(1): 77-83, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31190645

ABSTRACT

Flower and leaf herbivory might cause relevant and negative impacts on plant fitness. While flower removal or damage by florivores produces direct negative effects on plant fitness, folivores affect plant fitness by reducing resource allocation to reproduction. In this study, we examine the effects of both flower and leaf herbivory by leaf-cutting ants on the reproductive success of the shrub species Miconia nervosa (Smith) Triana (Family Melastomataceae) in a fragment of Atlantic Forest in Northeast Brazil. We conducted a randomized block-designed field experiment with nine replicates (blocks), in which three plants per block were assigned to one of the three following treatments: undamaged plants (ant exclusion), leaf-damaged plants (ant exclusion from reproductive organs, but not from leaves), and flower + leaf-damaged plants (no exclusion of ants). We then measured flower production, fruit set, and fruit production. Our results showed that flower + leaf-damaged plants reduced flower production nearly twofold in relation to undamaged plants, while flower set in leaf-damaged plants remained constant. The number of flowers that turned into fruits (i.e., fruit set), however, increased by 15% in flower + leaf-damaged plants, while it slightly decreased in leaf-damaged compared to undamaged plants. Contrastingly, fruit production was similar between all treatments. Taken together, our results suggest a prominent role of ant floral herbivory across different stages of the reproductive cycle in M. nervosa, with no consequences on final fruit production. The tolerance of M. nervosa to leaf-cutting ant herbivory might explain its high abundance in human-modified landscapes where leaf-cutting ants are hyper-abundant.


Subject(s)
Ants , Flowers/growth & development , Fruit/growth & development , Herbivory , Melastomataceae/physiology , Animals , Reproduction
3.
J Evol Biol ; 27(12): 2856-63, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25302869

ABSTRACT

How polygyny evolved in social insect societies is a long-standing question. This phenomenon, which is functionally similar to communal breeding in vertebrates, occurs when several queens come together in the same nest to lay eggs that are raised by workers. As a consequence, polygyny drastically reduces genetic relatedness among nestmates. It has been suggested that the short-term benefits procured by group living may outweigh the costs of sharing the same nesting site and thus contribute to organisms rearing unrelated individuals. However, tests of this hypothesis are still limited. To examine the evolutionary emergence of polygyny, we reviewed the literature to build a data set containing life-history traits for 149 Palearctic ant species and combined this data set with a reconstructed phylogeny. We show that monogyny is the ancestral state and that polygyny has evolved secondarily and independently throughout the phylogenetic tree. The occurrence of polygyny is significantly correlated with larger colony size, dependent colony founding and ecological dominance. Although polydomy (when a colony simultaneously uses several connected nests) tends to occur more frequently in polygynous species, this trend is not significant when phylogenetic history is accounted for. Overall, our results indicate that polygyny may have evolved in ants in spite of the reduction in nestmate relatedness because large colony size provides immediate ecological advantages, such as the more efficient use of temporal food resources. We suggest that the competitive context of ant communities may have provided the conditions necessary for the evolution of polygyny in some clades.


Subject(s)
Ants/physiology , Biological Evolution , Models, Biological , Phylogeny , Sexual Behavior, Animal/physiology , Animals , Likelihood Functions , Population Density , Species Specificity
4.
Plant Biol (Stuttg) ; 12(6): 842-52, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21040299

ABSTRACT

Most obligate seeder species build up a soil seed bank that is associated with massive seed germination in the year immediately after a fire. These species are also shade-intolerant and disappear when vegetation cover closes, creating unsuitable conditions for seedling recruitment. The only way for these plants to expand their populations is when habitats suitable for seedling recruitment arise (i.e. in years immediately after a fire). However, short primary seed dispersal of obligate seeders does not allow these plants to colonise the suitable habitats, and these habitats can only be colonised by secondary seed dispersion. We hypothesised that Fumana ericoides, an obligate-seeding small shrub, not only establishes abundantly in the first year after fire, but also expands its local range in the following years due to secondary dispersal by ants while suitable habitats are still available. We tested this hypothesis using experimental studies and a simulation model of potential population expansion in a recently burned area. Results showed that F. ericoides not only established prolifically in the year immediately after fire, but was also able to recruit new individuals and expand its population in the years following the fire, despite a low germination rate and short primary seed dispersal. Ant-mediated seed dispersal and availability of suitable habitats were key factors in this phenomenon: ants redistributed seeds in suitable habitats while they were available, which accelerated the expansion of F. ericoides because new plants established far away from the core population.


Subject(s)
Ants , Cistaceae/physiology , Fires , Seed Dispersal , Animals , Ecosystem , Germination , Seeds
SELECTION OF CITATIONS
SEARCH DETAIL
...