Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
JCPP Adv ; 4(2): e12223, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38827983

ABSTRACT

Background: Autistic traits are often reported to be elevated in children diagnosed with attention-deficit/hyperactivity disorder (ADHD). However, the distribution of subclinical autistic traits in children with ADHD has not yet been established; knowing this may have important implications for diagnostic and intervention processes. The present study proposes a preliminary model of the distribution of parent-reported ADHD and subclinical autistic traits in two independent samples of Australian children with and without an ADHD diagnosis. Methods: Factor mixture modelling was applied to Autism Quotient and Conners' Parent Rating Scale - Revised responses from parents of Australian children aged 6-15 years who participated in one of two independent studies. Results: A 2-factor, 2-class factor mixture model with class varying factor variances and intercepts demonstrated the best fit to the data in both discovery and replication samples. The factors corresponded to the latent constructs of 'autism' and 'ADHD', respectively. Class 1 was characterised by low levels of both ADHD and autistic traits. Class 2 was characterised by high levels of ADHD traits and low-to-moderate levels of autistic traits. The classes were largely separated along diagnostic boundaries. The largest effect size for differences between classes on the Autism Quotient was on the Social Communication subscale. Conclusions: Our findings support the conceptualisation of ADHD as a continuum, whilst confirming the utility of current categorical diagnostic criteria. Results suggest that subclinical autistic traits, particularly in the social communication domain, are unevenly distributed across children with clinically significant levels of ADHD traits. These traits might be profitably screened for in assessments of children with high ADHD symptoms and may also represent useful targets for intervention.

2.
Nat Neurosci ; 27(6): 1075-1086, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38649755

ABSTRACT

Human brain organization involves the coordinated expression of thousands of genes. For example, the first principal component (C1) of cortical transcription identifies a hierarchy from sensorimotor to association regions. In this study, optimized processing of the Allen Human Brain Atlas revealed two new components of cortical gene expression architecture, C2 and C3, which are distinctively enriched for neuronal, metabolic and immune processes, specific cell types and cytoarchitectonics, and genetic variants associated with intelligence. Using additional datasets (PsychENCODE, Allen Cell Atlas and BrainSpan), we found that C1-C3 represent generalizable transcriptional programs that are coordinated within cells and differentially phased during fetal and postnatal development. Autism spectrum disorder and schizophrenia were specifically associated with C1/C2 and C3, respectively, across neuroimaging, differential expression and genome-wide association studies. Evidence converged especially in support of C3 as a normative transcriptional program for adolescent brain development, which can lead to atypical supragranular cortical connectivity in people at high genetic risk for schizophrenia.


Subject(s)
Cerebral Cortex , Schizophrenia , Transcriptome , Humans , Schizophrenia/genetics , Schizophrenia/pathology , Cerebral Cortex/growth & development , Cerebral Cortex/pathology , Cerebral Cortex/metabolism , Female , Male , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Adolescent , Autistic Disorder/genetics , Autistic Disorder/pathology , Genome-Wide Association Study , Child , Adult , Neuroimaging/methods
3.
Hum Brain Mapp ; 45(3): e26588, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38401136

ABSTRACT

Attention network theory proposes three distinct types of attention-alerting, orienting, and control-that are supported by separate brain networks and modulated by different neurotransmitters, that is, norepinephrine, acetylcholine, and dopamine. Here, we explore the extent of cortical, genetic, and molecular dissociation of these three attention systems using multimodal neuroimaging. We evaluated the spatial overlap between fMRI activation maps from the attention network test (ANT) and cortex-wide gene expression data from the Allen Human Brain Atlas. The goal was to identify genes associated with each of the attention networks in order to determine whether specific groups of genes were co-expressed with the corresponding attention networks. Furthermore, we analyzed publicly available PET-maps of neurotransmitter receptors and transporters to investigate their spatial overlap with the attention networks. Our analyses revealed a substantial number of genes (3871 for alerting, 6905 for orienting, 2556 for control) whose cortex-wide expression co-varied with the activation maps, prioritizing several molecular functions such as the regulation of protein biosynthesis, phosphorylation, and receptor binding. Contrary to the hypothesized associations, the ANT activation maps neither aligned with the distribution of norepinephrine, acetylcholine, and dopamine receptor and transporter molecules, nor with transcriptomic profiles that would suggest clearly separable networks. Independence of the attention networks appeared additionally constrained by a high level of spatial dependency between the network maps. Future work may need to reconceptualize the attention networks in terms of their segregation and reevaluate the presumed independence at the neural and neurochemical level.


Subject(s)
Acetylcholine , Orientation , Humans , Orientation/physiology , Brain/diagnostic imaging , Brain/physiology , Magnetic Resonance Imaging/methods , Norepinephrine
4.
Netw Neurosci ; 7(4): 1326-1350, 2023.
Article in English | MEDLINE | ID: mdl-38144690

ABSTRACT

Recent years have seen a surge in the use of diffusion MRI to map connectomes in humans, paralleled by a similar increase in processing and analysis choices. Yet these different steps and their effects are rarely compared systematically. Here, in a healthy young adult population (n = 294), we characterized the impact of a range of analysis pipelines on one widely studied property of the human connectome: its degree distribution. We evaluated the effects of 40 pipelines (comparing common choices of parcellation, streamline seeding, tractography algorithm, and streamline propagation constraint) and 44 group-representative connectome reconstruction schemes on highly connected hub regions. We found that hub location is highly variable between pipelines. The choice of parcellation has a major influence on hub architecture, and hub connectivity is highly correlated with regional surface area in most of the assessed pipelines (ρ > 0.70 in 69% of the pipelines), particularly when using weighted networks. Overall, our results demonstrate the need for prudent decision-making when processing diffusion MRI data, and for carefully considering how different processing choices can influence connectome organization.

5.
Mol Psychiatry ; 28(10): 4175-4184, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37500827

ABSTRACT

Deficits in effective executive function, including inhibitory control are associated with risk for a number of psychiatric disorders and significantly impact everyday functioning. These complex traits have been proposed to serve as endophenotypes, however, their genetic architecture is not yet well understood. To identify the common genetic variation associated with inhibitory control in the general population we performed the first trans-ancestry genome wide association study (GWAS) combining data across 8 sites and four ancestries (N = 14,877) using cognitive traits derived from the stop-signal task, namely - go reaction time (GoRT), go reaction time variability (GoRT SD) and stop signal reaction time (SSRT). Although we did not identify genome wide significant associations for any of the three traits, GoRT SD and SSRT demonstrated significant and similar SNP heritability of 8.2%, indicative of an influence of genetic factors. Power analyses demonstrated that the number of common causal variants contributing to the heritability of these phenotypes is relatively high and larger sample sizes are necessary to robustly identify associations. In Europeans, the polygenic risk for ADHD was significantly associated with GoRT SD and the polygenic risk for schizophrenia was associated with GoRT, while in East Asians polygenic risk for schizophrenia was associated with SSRT. These results support the potential of executive function measures as endophenotypes of neuropsychiatric disorders. Together these findings provide the first evidence indicating the influence of common genetic variation in the genetic architecture of inhibitory control quantified using objective behavioural traits derived from the stop-signal task.


Subject(s)
Genome-Wide Association Study , Schizophrenia , Humans , Genome-Wide Association Study/methods , Schizophrenia/genetics , Executive Function , Multifactorial Inheritance/genetics , Endophenotypes , Polymorphism, Single Nucleotide/genetics , Genetic Predisposition to Disease/genetics
6.
Proc Natl Acad Sci U S A ; 120(20): e2218782120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155867

ABSTRACT

Gender inequality across the world has been associated with a higher risk to mental health problems and lower academic achievement in women compared to men. We also know that the brain is shaped by nurturing and adverse socio-environmental experiences. Therefore, unequal exposure to harsher conditions for women compared to men in gender-unequal countries might be reflected in differences in their brain structure, and this could be the neural mechanism partly explaining women's worse outcomes in gender-unequal countries. We examined this through a random-effects meta-analysis on cortical thickness and surface area differences between adult healthy men and women, including a meta-regression in which country-level gender inequality acted as an explanatory variable for the observed differences. A total of 139 samples from 29 different countries, totaling 7,876 MRI scans, were included. Thickness of the right hemisphere, and particularly the right caudal anterior cingulate, right medial orbitofrontal, and left lateral occipital cortex, presented no differences or even thicker regional cortices in women compared to men in gender-equal countries, reversing to thinner cortices in countries with greater gender inequality. These results point to the potentially hazardous effect of gender inequality on women's brains and provide initial evidence for neuroscience-informed policies for gender equality.


Subject(s)
Brain , Gender Equity , Male , Adult , Humans , Female , Brain/diagnostic imaging , Sex Factors
7.
Schizophr Bull ; 49(5): 1217-1228, 2023 09 07.
Article in English | MEDLINE | ID: mdl-36869759

ABSTRACT

Schizotypy is a multidimensional construct that captures a continuum of risk for developing schizophrenia-spectrum psychopathology. Existing 3-factor models of schizotypy, consisting of positive, negative, and disorganized dimensions have yielded mixed evidence of genetic continuity with schizophrenia using polygenic risk scores. Here, we propose an approach that involves splitting positive and negative schizotypy into more specific subdimensions that are phenotypically continuous with distinct positive symptoms and negative symptoms recognized in clinical schizophrenia. We used item response theory to derive high-precision estimates of psychometric schizotypy using 251 self-report items obtained from a non-clinical sample of 727 (424 females) adults. These subdimensions were organized hierarchically using structural equation modeling into 3 empirically independent higher-order dimensions enabling associations with polygenic risk for schizophrenia to be examined at different levels of phenotypic generality and specificity. Results revealed that polygenic risk for schizophrenia was associated with variance specific to delusional experiences (γ = 0.093, P = .001) and reduced social interest and engagement (γ = 0.076, P = .020), and these effects were not mediated via the higher-order general, positive, or negative schizotypy factors. We further fractionated general intellectual functioning into fluid and crystallized intelligence in 446 (246 females) participants that underwent onsite cognitive assessment. Polygenic risk scores explained 3.6% of the variance in crystallized intelligence. Our precision phenotyping approach could be used to enhance the etiologic signal in future genetic association studies and improve the detection and prevention of schizophrenia-spectrum psychopathology.


Subject(s)
Schizophrenia , Schizotypal Personality Disorder , Adult , Female , Humans , Schizophrenia/complications , Schizotypal Personality Disorder/diagnosis , Cognition , Psychopathology , Self Report
8.
Biol Psychiatry ; 93(5): 391-404, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36725139

ABSTRACT

Modern brainwide transcriptional atlases provide unprecedented opportunities for investigating the molecular correlates of brain organization, as quantified using noninvasive neuroimaging. However, integrating neuroimaging data with transcriptomic measures is not straightforward, and careful consideration is required to make valid inferences. In this article, we review recent work exploring how various methodological choices affect 3 main phases of imaging transcriptomic analyses, including 1) processing of transcriptional atlas data; 2) relating transcriptional measures to independently derived neuroimaging phenotypes; and 3) evaluating the functional implications of identified associations through gene enrichment analyses. Our aim is to facilitate the development of standardized and reproducible approaches for this rapidly growing field. We identify sources of methodological variability, key choices that can affect findings, and considerations for mitigating false positive and/or spurious results. Finally, we provide an overview of freely available open-source toolboxes implementing current best-practice procedures across all 3 analysis phases.


Subject(s)
Magnetic Resonance Imaging , Transcriptome , Humans , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Brain/diagnostic imaging , Gene Expression Profiling
9.
Biol Psychiatry Glob Open Sci ; 2(4): 319-331, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36324650

ABSTRACT

Noninvasive neuroimaging is a powerful tool for quantifying diverse aspects of brain structure and function in vivo, and it has been used extensively to map the neural changes associated with various brain disorders. However, most neuroimaging techniques offer only indirect measures of underlying pathological mechanisms. The recent development of anatomically comprehensive gene expression atlases has opened new opportunities for studying the transcriptional correlates of noninvasively measured neural phenotypes, offering a rich framework for evaluating pathophysiological hypotheses and putative mechanisms. Here, we provide an overview of some fundamental methods in imaging transcriptomics and outline their application to understanding brain disorders of neurodevelopment, adulthood, and neurodegeneration. Converging evidence indicates that spatial variations in gene expression are linked to normative changes in brain structure during age-related maturation and neurodegeneration that are in part associated with cell-specific gene expression markers of gene expression. Transcriptional correlates of disorder-related neuroimaging phenotypes are also linked to transcriptionally dysregulated genes identified in ex vivo analyses of patient brains. Modeling studies demonstrate that spatial patterns of gene expression are involved in regional vulnerability to neurodegeneration and the spread of disease across the brain. This growing body of work supports the utility of transcriptional atlases in testing hypotheses about the molecular mechanism driving disease-related changes in macroscopic neuroimaging phenotypes.

10.
Elife ; 112022 10 05.
Article in English | MEDLINE | ID: mdl-36197720

ABSTRACT

Asymmetries of the cerebral cortex are found across diverse phyla and are particularly pronounced in humans, with important implications for brain function and disease. However, many prior studies have confounded asymmetries due to size with those due to shape. Here, we introduce a novel approach to characterize asymmetries of the whole cortical shape, independent of size, across different spatial frequencies using magnetic resonance imaging data in three independent datasets. We find that cortical shape asymmetry is highly individualized and robust, akin to a cortical fingerprint, and identifies individuals more accurately than size-based descriptors, such as cortical thickness and surface area, or measures of inter-regional functional coupling of brain activity. Individual identifiability is optimal at coarse spatial scales (~37 mm wavelength), and shape asymmetries show scale-specific associations with sex and cognition, but not handedness. While unihemispheric cortical shape shows significant heritability at coarse scales (~65 mm wavelength), shape asymmetries are determined primarily by subject-specific environmental effects. Thus, coarse-scale shape asymmetries are highly personalized, sexually dimorphic, linked to individual differences in cognition, and are primarily driven by stochastic environmental influences.


Subject(s)
Cerebral Cortex , Functional Laterality , Humans , Magnetic Resonance Imaging/methods , Cognition , Sexual Behavior
11.
Mol Psychiatry ; 27(12): 5028-5037, 2022 12.
Article in English | MEDLINE | ID: mdl-36151456

ABSTRACT

Endophenotypes are heritable and quantifiable traits indexing genetic liability for a disorder. Here, we examined three potential endophenotypes, working memory function, response inhibition, and reaction time variability, for attention-deficit hyperactivity disorder (ADHD) measured as a dimensional latent trait in a large general population sample derived from the Adolescent Brain Cognitive DevelopmentSM Study. The genetic risk for ADHD was estimated using polygenic risk scores (PRS) whereas ADHD traits were quantified as a dimensional continuum using Bartlett factor score estimates, derived from Attention Problems items from the Child Behaviour Checklist and Effortful Control items from the Early Adolescent Temperament Questionnaire-Revised. The three candidate cognitive endophenotypes were quantified using task-based performance measures. Higher ADHD PRSs were associated with higher ADHD traits, as well as poorer working memory performance and increased reaction time variability. Lower working memory performance, poorer response inhibition, and increased reaction time variability were associated with more pronounced ADHD traits. Working memory and reaction time variability partially statistically mediated the relationship between ADHD PRS and ADHD traits, explaining 14% and 16% of the association, respectively. The mediation effect was specific to the genetic risk for ADHD and did not generalise to genetic risk for four other major psychiatric disorders. Together, these findings provide robust evidence from a large general population sample that working memory and reaction time variability can be considered endophenotypes for ADHD that mediate the relationship between ADHD PRS and ADHD traits.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Memory, Short-Term , Child , Adolescent , Humans , Memory, Short-Term/physiology , Reaction Time , Attention Deficit Disorder with Hyperactivity/epidemiology , Endophenotypes , Multifactorial Inheritance , Memory Disorders
12.
BMJ Open ; 12(9): e061626, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36127121

ABSTRACT

INTRODUCTION: Attention deficit hyperactivity disorder (ADHD) is characterised by significant deficits in attention and inhibition. These deficits are associated with negative sequelae that emerge in childhood and often continue throughout adolescence. Despite these difficulties adolescents with ADHD often demonstrate poor treatment compliance with traditional interventions (eg, psychostimulant medication). Virtual reality (VR) presents an innovative means of delivering engaging cognitive interventions for adolescents with ADHD and offers the potential to improve compliance with such interventions. The current parallel, randomised controlled trial aims to evaluate the effects of a VR intervention (Alfi) designed to improve inhibition in adolescents with ADHD. METHODS AND ANALYSIS: A sample of 100 adolescents (aged 13-17) with elevated ADHD symptoms will be recruited from secondary schools and ADHD organisations located in the state of Victoria, Australia. Participants will be randomly assigned to either an 8-week VR intervention or a usual care control. The VR intervention involves the completion of 14 sessions, each 20 min in duration. Participants will complete computerised assessments of inhibition and risk-taking preintervention and immediately postintervention. Parents/guardians will complete online questionnaires about their child's ADHD symptoms and social functioning at each of these timepoints. The primary outcome is change in inhibition performance in adolescents who received the intervention from preintervention to postintervention compared with adolescents in the control condition. Secondary outcomes include change in risk-taking, ADHD symptoms and social functioning in adolescents who received the intervention from preintervention to postintervention compared with adolescents in the control condition. If the intervention is shown to be effective, it may offer a supplementary approach to traditional interventions for adolescents with ADHD experiencing inhibitory control difficulties. ETHICS AND DISSEMINATION: This trial has ethics approval from the Monash University Human Research Ethics Committee (HREC) (21530) and the Victorian Department of Education and Training HREC (2020_004271). Results will be disseminated through peer-reviewed journals, conference proceedings and community activities. Individual summaries of the results will be provided to participants on request. TRIAL REGISTRATION NUMBER: ACTRN12620000647932.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Central Nervous System Stimulants , Virtual Reality , Adolescent , Attention Deficit Disorder with Hyperactivity/diagnosis , Child , Humans , Parents/psychology , Victoria
13.
Sci Adv ; 8(22): eabm6127, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35658036

ABSTRACT

The complex connectivity of nervous systems is thought to have been shaped by competitive selection pressures to minimize wiring costs and support adaptive function. Accordingly, recent modeling work indicates that stochastic processes, shaped by putative trade-offs between the cost and value of each connection, can successfully reproduce many topological properties of macroscale human connectomes measured with diffusion magnetic resonance imaging. Here, we derive a new formalism that more accurately captures the competing pressures of wiring cost minimization and topological complexity. We further show that model performance can be improved by accounting for developmental changes in brain geometry and associated wiring costs, and by using interregional transcriptional or microstructural similarity rather than topological wiring rules. However, all models struggled to capture topographical (i.e., spatial) network properties. Our findings highlight an important role for genetics in shaping macroscale brain connectivity and indicate that stochastic models offer an incomplete account of connectome organization.

15.
Mol Psychiatry ; 27(2): 1167-1176, 2022 02.
Article in English | MEDLINE | ID: mdl-34707236

ABSTRACT

Neuroanatomical abnormalities have been reported along a continuum from at-risk stages, including high schizotypy, to early and chronic psychosis. However, a comprehensive neuroanatomical mapping of schizotypy remains to be established. The authors conducted the first large-scale meta-analyses of cortical and subcortical morphometric patterns of schizotypy in healthy individuals, and compared these patterns with neuroanatomical abnormalities observed in major psychiatric disorders. The sample comprised 3004 unmedicated healthy individuals (12-68 years, 46.5% male) from 29 cohorts of the worldwide ENIGMA Schizotypy working group. Cortical and subcortical effect size maps with schizotypy scores were generated using standardized methods. Pattern similarities were assessed between the schizotypy-related cortical and subcortical maps and effect size maps from comparisons of schizophrenia (SZ), bipolar disorder (BD) and major depression (MDD) patients with controls. Thicker right medial orbitofrontal/ventromedial prefrontal cortex (mOFC/vmPFC) was associated with higher schizotypy scores (r = 0.067, pFDR = 0.02). The cortical thickness profile in schizotypy was positively correlated with cortical abnormalities in SZ (r = 0.285, pspin = 0.024), but not BD (r = 0.166, pspin = 0.205) or MDD (r = -0.274, pspin = 0.073). The schizotypy-related subcortical volume pattern was negatively correlated with subcortical abnormalities in SZ (rho = -0.690, pspin = 0.006), BD (rho = -0.672, pspin = 0.009), and MDD (rho = -0.692, pspin = 0.004). Comprehensive mapping of schizotypy-related brain morphometry in the general population revealed a significant relationship between higher schizotypy and thicker mOFC/vmPFC, in the absence of confounding effects due to antipsychotic medication or disease chronicity. The cortical pattern similarity between schizotypy and schizophrenia yields new insights into a dimensional neurobiological continuity across the extended psychosis phenotype.


Subject(s)
Bipolar Disorder , Psychotic Disorders , Schizophrenia , Schizotypal Personality Disorder , Female , Humans , Magnetic Resonance Imaging/methods , Male , Psychotic Disorders/diagnostic imaging , Schizotypal Personality Disorder/diagnostic imaging
16.
Elife ; 102021 11 16.
Article in English | MEDLINE | ID: mdl-34783653

ABSTRACT

Gene expression fundamentally shapes the structural and functional architecture of the human brain. Open-access transcriptomic datasets like the Allen Human Brain Atlas provide an unprecedented ability to examine these mechanisms in vivo; however, a lack of standardization across research groups has given rise to myriad processing pipelines for using these data. Here, we develop the abagen toolbox, an open-access software package for working with transcriptomic data, and use it to examine how methodological variability influences the outcomes of research using the Allen Human Brain Atlas. Applying three prototypical analyses to the outputs of 750,000 unique processing pipelines, we find that choice of pipeline has a large impact on research findings, with parameters commonly varied in the literature influencing correlations between derived gene expression and other imaging phenotypes by as much as ρ ≥ 1.0. Our results further reveal an ordering of parameter importance, with processing steps that influence gene normalization yielding the greatest impact on downstream statistical inferences and conclusions. The presented work and the development of the abagen toolbox lay the foundation for more standardized and systematic research in imaging transcriptomics, and will help to advance future understanding of the influence of gene expression in the human brain.


Subject(s)
Brain/metabolism , Gene Expression Profiling/instrumentation , Software , Gene Expression Profiling/standards , Humans , Reference Standards , Transcriptome , Workflow
17.
Neuroimage ; 244: 118570, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34508898

ABSTRACT

The integration of modern neuroimaging methods with genetically informative designs and data can shed light on the molecular mechanisms underlying the structural and functional organization of the human connectome. Here, we review studies that have investigated the genetic basis of human brain network structure and function through three complementary frameworks: (1) the quantification of phenotypic heritability through classical twin designs; (2) the identification of specific DNA variants linked to phenotypic variation through association and related studies; and (3) the analysis of correlations between spatial variations in imaging phenotypes and gene expression profiles through the integration of neuroimaging and transcriptional atlas data. We consider the basic foundations, strengths, limitations, and discoveries associated with each approach. We present converging evidence to indicate that anatomical connectivity is under stronger genetic influence than functional connectivity and that genetic influences are not uniformly distributed throughout the brain, with phenotypic variation in certain regions and connections being under stronger genetic control than others. We also consider how the combination of imaging and genetics can be used to understand the ways in which genes may drive brain dysfunction in different clinical disorders.


Subject(s)
Brain/diagnostic imaging , Connectome/methods , Biological Variation, Population , Humans , Neuroimaging , Phenotype , Transcriptome , Twins
18.
Mol Autism ; 12(1): 55, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34353377

ABSTRACT

BACKGROUND: ASD and ADHD are prevalent neurodevelopmental disorders that frequently co-occur and have strong evidence for a degree of shared genetic aetiology. Behavioural and neurocognitive heterogeneity in ASD and ADHD has hampered attempts to map the underlying genetics and neurobiology, predict intervention response, and improve diagnostic accuracy. Moving away from categorical conceptualisations of psychopathology to a dimensional approach is anticipated to facilitate discovery of data-driven clusters and enhance our understanding of the neurobiological and genetic aetiology of these conditions. The Monash Autism-ADHD genetics and neurodevelopment (MAGNET) project is one of the first large-scale, family-based studies to take a truly transdiagnostic approach to ASD and ADHD. Using a comprehensive phenotyping protocol capturing dimensional traits central to ASD and ADHD, the MAGNET project aims to identify data-driven clusters across ADHD-ASD spectra using deep phenotyping of symptoms and behaviours; investigate the degree of familiality for different dimensional ASD-ADHD phenotypes and clusters; and map the neurocognitive, brain imaging, and genetic correlates of these data-driven symptom-based clusters. METHODS: The MAGNET project will recruit 1,200 families with children who are either typically developing, or who display elevated ASD, ADHD, or ASD-ADHD traits, in addition to affected and unaffected biological siblings of probands, and parents. All children will be comprehensively phenotyped for behavioural symptoms, comorbidities, neurocognitive and neuroimaging traits and genetics. CONCLUSION: The MAGNET project will be the first large-scale family study to take a transdiagnostic approach to ASD-ADHD, utilising deep phenotyping across behavioural, neurocognitive, brain imaging and genetic measures.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Autistic Disorder , Attention Deficit Disorder with Hyperactivity/complications , Attention Deficit Disorder with Hyperactivity/diagnosis , Attention Deficit Disorder with Hyperactivity/genetics , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/epidemiology , Autism Spectrum Disorder/etiology , Autistic Disorder/complications , Autistic Disorder/diagnosis , Autistic Disorder/genetics , Humans , Magnets , Neurobiology
19.
Gigascience ; 10(8)2021 08 20.
Article in English | MEDLINE | ID: mdl-34414422

ABSTRACT

As the global health crisis unfolded, many academic conferences moved online in 2020. This move has been hailed as a positive step towards inclusivity in its attenuation of economic, physical, and legal barriers and effectively enabled many individuals from groups that have traditionally been underrepresented to join and participate. A number of studies have outlined how moving online made it possible to gather a more global community and has increased opportunities for individuals with various constraints, e.g., caregiving responsibilities. Yet, the mere existence of online conferences is no guarantee that everyone can attend and participate meaningfully. In fact, many elements of an online conference are still significant barriers to truly diverse participation: the tools used can be inaccessible for some individuals; the scheduling choices can favour some geographical locations; the set-up of the conference can provide more visibility to well-established researchers and reduce opportunities for early-career researchers. While acknowledging the benefits of an online setting, especially for individuals who have traditionally been underrepresented or excluded, we recognize that fostering social justice requires inclusivity to actively be centered in every aspect of online conference design. Here, we draw from the literature and from our own experiences to identify practices that purposefully encourage a diverse community to attend, participate in, and lead online conferences. Reflecting on how to design more inclusive online events is especially important as multiple scientific organizations have announced that they will continue offering an online version of their event when in-person conferences can resume.

20.
Sci Adv ; 7(29)2021 07.
Article in English | MEDLINE | ID: mdl-34261652

ABSTRACT

Brain regions vary in their molecular and cellular composition, but how this heterogeneity shapes neuronal dynamics is unclear. Here, we investigate the dynamical consequences of regional heterogeneity using a biophysical model of whole-brain functional magnetic resonance imaging (MRI) dynamics in humans. We show that models in which transcriptional variations in excitatory and inhibitory receptor (E:I) gene expression constrain regional heterogeneity more accurately reproduce the spatiotemporal structure of empirical functional connectivity estimates than do models constrained by global gene expression profiles or MRI-derived estimates of myeloarchitecture. We further show that regional transcriptional heterogeneity is essential for yielding both ignition-like dynamics, which are thought to support conscious processing, and a wide variance of regional-activity time scales, which supports a broad dynamical range. We thus identify a key role for E:I heterogeneity in generating complex neuronal dynamics and demonstrate the viability of using transcriptomic data to constrain models of large-scale brain function.


Subject(s)
Brain , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain/physiology , Consciousness , Humans , Magnetic Resonance Imaging/methods , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...