Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Contact Dermatitis ; 52(4): 207-15, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15859993

ABSTRACT

The currently used 8% fragrance mix (FM I) does not identify all patients with a positive history of adverse reactions to fragrances. A new FM II with 6 frequently used chemicals was evaluated in 1701 consecutive patients patch tested in 6 dermatological centres in Europe. FM II was tested in 3 concentrations - 28% FM II contained 5% hydroxyisohexyl 3-cyclohexene carboxaldehyde (Lyral), 2% citral, 5% farnesol, 5% coumarin, 1% citronellol and 10%alpha-hexyl-cinnamic aldehyde; in 14% FM II, the single constituents' concentration was lowered to 50% and in 2.8% FM II to 10%. Each patient was classified regarding a history of adverse reactions to fragrances: certain, probable, questionable, none. Positive reactions to FM I occurred in 6.5% of the patients. Positive reactions to FM II were dose-dependent and increased from 1.3% (2.8% FM II), through 2.9% (14% FM II) to 4.1% (28% FM II). Reactions classified as doubtful or irritant varied considerably between the 6 centres, with a mean value of 7.2% for FM I and means ranging from 1.8% to 10.6% for FM II. 8.7% of the tested patients had a certain fragrance history. Of these, 25.2% were positive to FM I; reactivity to FM II was again dose-dependent and ranged from 8.1% to 17.6% in this subgroup. Comparing 2 groups of history - certain and none - values for sensitivity and specificity were calculated: sensitivity: FM I, 25.2%; 2.8% FM II, 8.1%; 14% FM II, 13.5%; 28% FM II, 17.6%; specificity: FM I, 96.5%; 2.8% FM II, 99.5%; 14% FM II, 98.8%; 28% FM II, 98.1%. 31/70 patients (44.3%) positive to 28% FM II were negative to FM I, with 14% FM II this proportion being 16/50 (32%). In the group of patients with a certain history, a total of 7 patients were found reacting to FM II only. Conversely, in the group of patients without any fragrance history, there were significantly more positive reactions to FM I than to any concentration of FM II. In conclusion, the new FM II detects additional patients sensitive to fragrances missed by FM I; the number of false-positive reactions is lower with FM II than with FM I. Considering sensitivity, specificity and the frequency of doubtful reactions, the medium concentration, 14% FM II, seems to be the most appropriate diagnostic screening tool.


Subject(s)
Dermatitis, Allergic Contact/diagnosis , Dermatitis, Allergic Contact/etiology , Patch Tests , Perfume , Acrolein/administration & dosage , Acrolein/adverse effects , Acrolein/analogs & derivatives , Acyclic Monoterpenes , Adolescent , Adult , Aged , Aged, 80 and over , Aldehydes/administration & dosage , Aldehydes/adverse effects , Allergens/administration & dosage , Allergens/adverse effects , Coumarins/administration & dosage , Coumarins/adverse effects , Cyclohexenes , Dose-Response Relationship, Drug , Farnesol/administration & dosage , Farnesol/adverse effects , Female , Humans , Male , Maximum Allowable Concentration , Middle Aged , Monoterpenes/administration & dosage , Monoterpenes/adverse effects , Perfume/administration & dosage , Perfume/adverse effects , Sensitivity and Specificity
2.
Contact Dermatitis ; 52(4): 216-25, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15859994

ABSTRACT

UNLABELLED: A new fragrance mix (FM II), with 6 frequently used chemicals not present in the currently used fragrance mix (FM I), was evaluated in 6 dermatological centres in Europe, as previously reported. In this publication, test results with the individual constituents and after repeated open application test (ROAT) of FM II are described. Furthermore, cosmetic products which had caused a contact dermatitis in patients were analysed for the presence of the individual constituents. In 1701 patients, the individual constituents of the medium (14%) and the highest (28%) concentration of FM II were simultaneously applied with the new mix at 3 concentrations (break-down testing for the lowest concentration of FM II (2.8%) was performed only if the mix was positive). ROAT was performed with the concentration of the FM II which had produced a positive or doubtful (+ or ?+) patch test reaction. Patients' products were analysed for the 6 target compounds by gas chromatography-mass spectrometry (GC-MS). RESULTS: 50 patients (2.9%) showed a positive reaction to 14% FM II and 70 patients (4.1%) to 28% FM II. 24/50 (48%) produced a positive reaction to 1 or more of the individual constituents of 14% FM II and 38/70 (54.3%) to 28% FM II, respectively. If doubtful reactions to individual constituents are included, the break-down testing was positive in 74% and 70%, respectively. Patients with a positive reaction to 14% FM II showed a higher rate of reactions to the individual constituent of the 28% FM II: 36/50 (72%). Positive reactions to individual constituents in patients negative to FM II were exceedingly rare. If doubtful reactions are regarded as negative, the sensitivity, specificity, positive predictive value and negative predictive value for the medium concentration of FM II towards at least 1 individual constituent was 92.3% (exact 95% confidence interval 74.9-99.1%), 98.4% (97.7-99.0%), 48% (33.7-62.6%) and 99.9% (99.6-"100.0%), respectively. For the high concentration, the figures were very similar. The frequency of positive reactions to the individual constituents in descending order was the same for both FM II concentrations: hydroxyisohexyl 3-cyclohexene carboxaldehyde (Lyral) > citral > farnesol > citronellol > alpha-hexyl-cinnamic aldehyde (AHCA). No unequivocally positive reaction to coumarin was observed. Lyral) was the dominant individual constituent, with positive reactions in 36% of patients reacting to 14% FM II and 37.1% to 28% FM II. 5/11 patients developed a positive ROAT after a median of 7 days (range 2-10). The 5 patients with a doubtful or negative reaction to 28% FM II were all ROAT negative except 1. There were 7 patients with a certain fragrance history and a positive reaction to either 28% or 14% FM II but a negative reaction to FM I. Analysis with GC-MS in a total of 24 products obtained from 12 patients showed at least 1-5 individual constituents per product: Lyral (79.2%), citronellol (87.5%), AHCA (58.3%), citral (50%) and coumarin (50%). The patients were patch test positive to Lyral, citral and AHCA. In conclusion, patients with a certain fragrance history and a negative reaction to FM I can be identified by FM II. Testing with individual constituents is positive in about 50% of cases reacting to either 14% or 28% FM II.


Subject(s)
Cosmetics/chemistry , Dermatitis, Allergic Contact/diagnosis , Dermatitis, Allergic Contact/etiology , Perfume/administration & dosage , Acrolein/administration & dosage , Acrolein/adverse effects , Acrolein/analogs & derivatives , Acyclic Monoterpenes , Adolescent , Adult , Aged , Aged, 80 and over , Aldehydes/administration & dosage , Aldehydes/adverse effects , Allergens/administration & dosage , Allergens/adverse effects , Cosmetics/adverse effects , Coumarins/administration & dosage , Coumarins/adverse effects , Cyclohexenes , Dose-Response Relationship, Drug , Farnesol/administration & dosage , Farnesol/adverse effects , Female , Humans , Male , Maximum Allowable Concentration , Middle Aged , Monoterpenes/administration & dosage , Monoterpenes/adverse effects , Patch Tests , Perfume/adverse effects , Predictive Value of Tests , Sensitivity and Specificity
3.
Contact Dermatitis ; 50(2): 91-7, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15128320

ABSTRACT

Fragrance substances represent a very diverse group of chemicals; a proportion of them are associated with the ability to cause allergic reactions in the skin. Efforts to find substitute materials are hindered by the need to undertake animal testing for determining both skin sensitization hazard and potency. One strategy to avoid such testing is through an understanding of the relationships between chemical structure and skin sensitization, so-called structure-activity relationships. In recent work, we evaluated 2 groups of fragrance chemicals -- saturated aldehydes and alpha,beta-unsaturated aldehydes. Simple quantitative structure-activity relationship (QSAR) models relating the EC3 values [derived from the local lymph node assay (LLNA)] to physicochemical properties were developed for both sets of aldehydes. In the current study, we evaluated an additional group of carbonyl-containing compounds to test the predictive power of the developed QSARs and to extend their scope. The QSAR models were used to predict EC3 values of 10 newly selected compounds. Local lymph node assay data generated for these compounds demonstrated that the original QSARs were fairly accurate, but still required improvement. Development of these QSAR models has provided us with a better understanding of the potential mechanisms of action for aldehydes, and hence how to avoid or limit allergy. Knowledge generated from this work is being incorporated into new/improved rules for sensitization in the expert toxicity prediction system, deductive estimation of risk from existing knowledge (DEREK).


Subject(s)
Aldehydes/chemistry , Allergens/chemistry , Models, Statistical , Perfume/chemistry , Aldehydes/pharmacology , Allergens/pharmacology , Lymph Nodes/drug effects , Perfume/pharmacology , Predictive Value of Tests , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...