Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Neuropsychopharmacol ; 73: 82-95, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37148631

ABSTRACT

Clozapine presents immunoregulatory properties not well understood. To address this issue, we performed this systematic review to evaluate the immune alterations induced by clozapine and its relationship with the drug's clinical response and compare it with other antipsychotics. Our systematic review has selected nineteen studies meeting the inclusion criteria, from which eleven were included in the meta-analysis, totalizing 689 subjects distributed over three different comparisons. The results revealed that clozapine treatment activates the compensatory immune-regulatory system (CIRS) (Hedges's g = +1.049; CI +0.62 - +1.47, p < 0.001) but has no effects on the immune-Inflammatory Response System (IRS) (Hedges's g= -0.27; CI -1.76 - +1.22, p = 0.71), M1 macrophage (Hedges's g= -0.32; CI -1.78 - +1.14, p = 0.65) and Th1 (Hedge's g = 0.86; CI -0.93 - +1.814, p = 0.07) profiles. Comparing clozapine-treated patients with other anti-psychotics-treated, plasma levels of interleukin (IL)-6 were greater in the clozapine group (Hedge's g = 0.75; CI 0.35 - 1.15, p<0.001). In addition, higher IL-6 plasma levels after four weeks of clozapine treatment were related to the development of clozapine-induced fever; however, IL-6 levels recovered to baseline in 6-10 weeks due to an unexplained compensatory mechanism. In conclusion, our results show that clozapine treatment causes a time-dependent mixed immune profile characterized by increased IL-6 levels and CIRS activation, which may contribute to this drug mechanism of action and adverse effects. Future studies must be designed to investigate the relationship between clozapine-induced immune alterations and symptom remission, treatment resistance, and adverse effects, given the importance of this drug for treating resistant schizophrenia.


Subject(s)
Antipsychotic Agents , Clozapine , Schizophrenia , Humans , Clozapine/adverse effects , Schizophrenia/drug therapy , Interleukin-6 , Antipsychotic Agents/adverse effects , Oxidative Stress
2.
Am J Physiol Lung Cell Mol Physiol ; 312(5): L657-L668, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28235951

ABSTRACT

More than 2% of all human genes are coding for a complex system of more than 700 proteases and protease inhibitors. Among them, serine proteases play extraordinary, diverse functions in different physiological and pathological processes. The human airway trypsin-like protease (HAT), also referred to as TMPRSS11D and serine 11D, belongs to the emerging family of cell surface proteolytic enzymes, the type II transmembrane serine proteases (TTSPs). Through the cleavage of its four major identified substrates, HAT triggers specific responses, notably in epithelial cells, within the pericellular and extracellular environment, including notably inflammatory cytokine production, inflammatory cell recruitment, or anticoagulant processes. This review summarizes the potential role of this recently described protease in mediating cell surface proteolytic events, to highlight the structural features, proteolytic activity, and regulation, including the expression profile of HAT, and discuss its possible roles in respiratory physiology and disease.


Subject(s)
Respiration Disorders/enzymology , Serine Endopeptidases/metabolism , Animals , Biocatalysis , Fetal Development , Humans , Models, Biological , Respiration Disorders/embryology , Respiration Disorders/pathology , Serine Endopeptidases/chemistry
3.
Am J Respir Crit Care Med ; 174(1): 58-66, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16574935

ABSTRACT

RATIONALE AND OBJECTIVES: Hepatocyte growth factor (HGF) protects against lung fibrosis in several animal models. Pro-HGF activation to HGF is subjected to regulation by its activator (HGFA), a serine protease, and HGFA-specific inhibitors (HAI-1 and HAI-2). Our hypothesis was that fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) had an altered capacity to activate pro-HGF in vitro compared with control fibroblasts. METHODS: We measured the kinetics of pro-HGF activation in human lung fibroblasts from control subjects and from patients with IPF by Western blot. HGFA, HAI-1, and HAI-2 expression was evaluated by immunohistochemistry, RNA protection assay, and Western blot. We evaluated the effect of TGF-beta(1) and PGE(2) on pro-HGF activation and HGFA, HAI-1, and HAI-2 expression. MAIN RESULTS: Lung fibroblasts activated pro-HGF in vitro. Pro-HGF activation was inhibited by serine protease inhibitors, by an anti-HGFA antibody, as well as by HAI-1 and HAI-2. Pro-HGF activation by IPF fibroblasts was reduced compared with control fibroblasts. In IPF fibroblasts, HGFA expression was lower and HAI-1 and HAI-2 expression was higher compared with control fibroblasts. PGE(2) stimulated pro-HGF activation through increased expression of HGFA and decreased expression of its inhibitor HAI-2. In contrast, TGF-beta(1) reduced the ability of lung fibroblasts to activate pro-HGF through decreased expression of HGFA and increased expression of its inhibitors. CONCLUSIONS: IPF fibroblasts have a low capacity to activate pro-HGF in vitro via a low level of HGFA expression and high levels of HAI-1 and HAI-2 expression, and PGE(2) is able to partially correct this defect.


Subject(s)
Fibroblasts/physiology , Hepatocyte Growth Factor/metabolism , Membrane Glycoproteins/metabolism , Protein Precursors/metabolism , Proteinase Inhibitory Proteins, Secretory/metabolism , Pulmonary Fibrosis/pathology , Serine Endopeptidases/metabolism , Adult , Aged , Case-Control Studies , Cell Culture Techniques , Dinoprostone/physiology , Female , Hepatocyte Growth Factor/genetics , Humans , Male , Membrane Glycoproteins/genetics , Middle Aged , Protein Precursors/genetics , Proteinase Inhibitory Proteins, Secretory/genetics , Pulmonary Fibrosis/metabolism , RNA, Messenger/metabolism , Serine Endopeptidases/genetics , Transforming Growth Factor beta1/physiology
4.
Development ; 129(1): 53-60, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11782400

ABSTRACT

The mouse develops five pairs of mammary glands that arise during mid-gestation from five pairs of placodes of ectodermal origin. We have investigated the molecular mechanisms of mammary placode development using Lef1 as a marker for the epithelial component of the placode, and mice deficient for Fgf10 or Fgfr2b, both of which fail to develop normal mammary glands. Mammary placode induction involves two different signaling pathways, a FGF10/FGFR2b-dependent pathway for placodes 1, 2, 3 and 5 and a FGF10/FGFR2b-independent pathway for placode 4. Our results also suggest that FGF signaling is involved in the maintenance of mammary bud 4, and that Fgf10 deficient epithelium can undergo branching morphogenesis into the mammary fat pad precursor.


Subject(s)
Fibroblast Growth Factors/physiology , Mammary Glands, Animal/embryology , Receptors, Fibroblast Growth Factor/physiology , Signal Transduction , Animals , Female , Fibroblast Growth Factor 10 , Gene Deletion , Mammary Glands, Animal/physiology , Mice , Mice, Inbred C57BL , Morphogenesis/physiology , Pregnancy , Receptor, Fibroblast Growth Factor, Type 2
SELECTION OF CITATIONS
SEARCH DETAIL
...