Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Isotopes Environ Health Stud ; 56(5-6): 684-699, 2020.
Article in English | MEDLINE | ID: mdl-32657622

ABSTRACT

Monitoring of water quality over several years has revealed a persistent pesticide contamination of surface and groundwater in several Caribbean Islands, with pesticide concentrations locally over the drinking-water limit set in Europe, i.e. 0.1 µg L-1 per substance. For Martinique, mainly one pesticide, chlordecone (CLD), remains of major concern despite its withdrawal from the market in 1993. Since the first sampling campaign in 1999-2000, time and space variations of CLD concentrations in surface water and groundwater are still not well understood and difficult to correlate with climate, geological or hydrogeological contexts. We carried out a study in the Chalvet catchment (northeast Martinique) in order to understand more precisely how water movements may explain pesticide transfer. Various tools such as δ2H - δ18O and chemical parameters were used. Deuterium excess d was proven relevant for determining how CLD is transported in groundwater; it highlighted the role of the groundwater/surface water interaction in spatial and temporal variability of surface water quality. The resulting conceptual hydrogeological model also helps understanding why CLD still has high concentrations in surface water. The approach proposed here can be used in other Caribbean islands that are poorly equipped for explaining pesticide occurrences in surface waters.


Subject(s)
Chlordecone/analysis , Deuterium/analysis , Environmental Monitoring/methods , Oxygen Isotopes/analysis , Pesticides/analysis , Water Pollutants, Chemical/analysis , Fresh Water/chemistry , Groundwater/chemistry , Islands , Martinique , Spatio-Temporal Analysis , Water Movements
2.
Environ Sci Pollut Res Int ; 27(33): 40999-41013, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31444722

ABSTRACT

Chlordecone, applied on soils until 1993 to control banana weevil, has polluted water resources in the French West Indies for more than 40 years. At the watershed scale, chlordecone applications were not homogenous, generating a spatial heterogeneity of the pollution. The roles of climate, hydrology, soil, agronomy, and geology on watershed functioning generate a temporal heterogeneity of the pollution. This study questions the interactions between practices and the environment that induce such variability. We analyzed hydrological and water pollution datasets from a 2-year monitoring program on the Galion watershed in Martinique (French West Indies). We conjointly analyzed (i) weekly chlordecone (CLD) concentration monitored on 3 river sampling sites, (ii) aquifer piezometric dynamics and pollutions, and (iii) agricultural practices on polluted soils. Our results showed that chlordecone pollution in surface waters are characterized by annual trends and infra-annual variations. Aquifers showed CLD concentration 10 times higher than surface water, with CLD concentration peaks during recharge events. We showed strong interactions between rainfall events and practices on CLD pollution requiring a systemic management approach, in particular during post-cyclonic periods. Small sub-watershed with high CLD pollution appeared to be a substantial contributor to CLD mass transfers to the marine environment via rivers and should therefore receive priority management. We suggest increasing stable organic matter return to soil as well as external input of organic matter to reduce CLD transfers to water. We identified hydrological conditions-notably drying periods-and tillage as the most influential factors on CLD leaching. In particular, tillage acts on 3 processes that increases CLD leaching: organic matter degradation, modification of water paths in soil, and allophane clay degradation.


Subject(s)
Chlordecone , Insecticides , Soil Pollutants , Chlordecone/analysis , Insecticides/analysis , Martinique , Soil , Soil Pollutants/analysis , Water Pollution , West Indies
3.
Sci Total Environ ; 574: 1232-1242, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27697339

ABSTRACT

Persistent organic pollutants like organochlorine pesticides continue to contaminate large areas worldwide raising questions concerning their management. We designed and tested a method to link soil and water pollution in the watershed of the Galion River in Martinique. We first estimated the risk of soil contamination by chlordecone by referring to past use of land for banana cultivation and took 27 soil samples. We then sampled surface waters at 39 points and groundwater at 16 points. We tested three hypotheses linked to the source of chlordecone pollution at the watershed scale: (i) soils close to the river, (ii) soils close to the sampling point, (iii) throughout the sub-watershed generated at the sampling point. Graphical and statistical analysis showed that contamination of the river increased when it passed through an area with contaminated plots and decreased when it passed through area not contaminated by chlordecone. Modeling showed that the entire surface area of the watershed contributed to river pollution, suggesting that the river was mainly being contaminated by the aquifers and groundwater flows. Our method proved to be a reliable way to identify areas polluted by chlordecone at the watershed scale and should help stakeholders focus their management actions on both hot spots and the whole watershed.

SELECTION OF CITATIONS
SEARCH DETAIL
...