Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(17): 176604, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37955483

ABSTRACT

We perform a systematic study of Andreev conversion at the interface between a superconductor and graphene in the quantum Hall (QH) regime. We find that the probability of Andreev conversion from electrons to holes follows an unexpected but clear trend: the dependencies on temperature and magnetic field are nearly decoupled. We discuss these trends and the role of the superconducting vortices, whose normal cores could both absorb and dephase the individual electrons in a QH edge. Our Letter may pave the road to engineering a future generation of hybrid devices for exploiting superconductivity proximity in chiral channels.

2.
Nano Lett ; 23(11): 5257-5263, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37191404

ABSTRACT

Superconducting diodes are proposed nonreciprocal circuit elements that should exhibit nondissipative transport in one direction while being resistive in the opposite direction. Multiple examples of such devices have emerged in the past couple of years; however, their efficiency is typically limited, and most of them require a magnetic field to function. Here we present a device that achieves efficiencies approaching 100% while operating at zero field. Our samples consist of a network of three graphene Josephson junctions linked by a common superconducting island, to which we refer as a Josephson triode. The three-terminal nature of the device inherently breaks the inversion symmetry, and the control current applied to one of the contacts breaks the time-reversal symmetry. The triode's utility is demonstrated by rectifying a small (nA scale amplitude) applied square wave. We speculate that devices of this type could be realistically employed in the modern quantum circuits.

3.
Sci Adv ; 9(7): eadf1414, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36791191

ABSTRACT

A two-dimensional, anisotropic superconductivity was recently found at the KTaO3(111) interfaces. The nature of the anisotropic superconducting transition remains a subject of debate. To investigate the origins of the observed behavior, we grew epitaxial KTaO3(111)-based heterostructures. We show that the superconductivity is robust against the in-plane magnetic field and violates the Pauli limit. We also show that the Cooper pairs are more resilient when the bias is along [11[Formula: see text]] (I ∥ [11[Formula: see text]]) and the magnetic field is along [1[Formula: see text]0] (B ∥ [1[Formula: see text]0]). We discuss the anisotropic nature of superconductivity in the context of electronic structure, orbital character, and spin texture at the KTaO3(111) interfaces. The results point to future opportunities to enhance superconducting transition temperatures and critical fields in crystalline, two-dimensional superconductors with strong spin-orbit coupling.

4.
Nano Lett ; 22(23): 9645-9651, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36441587

ABSTRACT

The vanishing band gap of graphene has long presented challenges for making high-quality quantum point contacts (QPCs)─the partially transparent p-n interfaces introduced by conventional split gates tend to short circuit the QPCs. This complication has hindered the fabrication of graphene quantum Hall Fabry-Pérot interferometers, until recent advances have allowed split-gate QPCs to operate utilizing the highly resistive ν = 0 state. Here, we present a simple recipe to fabricate QPCs by etching a narrow trench in the graphene sheet to separate the conducting channel from self-aligned graphene side gates. We demonstrate operation of the individual QPCs in the quantum Hall regime and further utilize these QPCs to create and study a quantum Hall interferometer.


Subject(s)
Graphite
5.
Nano Lett ; 22(17): 7073-7079, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35997531

ABSTRACT

The dynamical properties of multiterminal Josephson junctions (MT-JJs) have attracted interest, driven by the promise of new insights into synthetic topological phases of matter and Floquet states. This effort has culminated in the discovery of Cooper multiplets in which the splitting of a Cooper pair is enabled via a series of Andreev reflections that entangle four (or more) electrons. Here, we show that multiplet resonances can also emerge as a consequence of the three-terminal circuit model. The supercurrent appears due to correlated phase dynamics at values that correspond to the multiplet condition nV1 = -mV2 of applied bias. Multiplet resonances are seen in nanofabricated three-terminal graphene JJs, analog three-terminal JJ circuits, and circuit simulations. The stabilization of the supercurrent is purely dynamical, and a close analog to Kapitza's inverted pendulum problem. We describe parameter considerations that optimize the detection of the multiplet lines both for design of future devices.


Subject(s)
Electrons , Vibration
6.
Nano Lett ; 21(22): 9668-9674, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34779633

ABSTRACT

When a Josephson junction is exposed to microwave radiation, it undergoes the inverse AC Josephson effect─the phase of the junction locks to the drive frequency. As a result, the I-V curves of the junction acquire "Shapiro steps" of quantized voltage. If the junction has three or more superconducting contacts, coupling between different pairs of terminals must be taken into account and the state of the junction evolves in a phase space of higher dimensionality. Here, we study the multiterminal inverse AC Josephson effect in a graphene sample with three superconducting terminals. We observe robust fractional Shapiro steps and correlated switching events, which can only be explained by considering the device as a completely connected Josephson network. We successfully simulate the observed behaviors using a modified two-dimensional RCSJ model. Our results suggest that multiterminal Josephson junctions are a playground to study highly connected nonlinear networks with novel topologies.

7.
Nano Lett ; 20(10): 6998-7003, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32902995

ABSTRACT

The AC Josephson effect manifests itself in the form of "Shapiro steps" of quantized voltage in Josephson junctions subject to radiofrequency (RF) radiation. This effect presents an early example of a driven-dissipative quantum phenomenon and is presently utilized in primary voltage standards. Shapiro steps have also become one of the standard tools to probe junctions made in a variety of novel materials. Here we study Shapiro steps in a widely tunable graphene-based Josephson junction in which the high-frequency dynamics is determined by the on-chip environment. We investigate the variety of patterns that can be obtained in this well-understood system depending on the carrier density, temperature, RF frequency, and magnetic field. Although the patterns of Shapiro steps can change drastically when just one parameter is varied, the overall trends can be understood and the behaviors straightforwardly simulated, showing some key differences from the conventional RCSJ model. The resulting understanding may help interpret similar measurements in more complex materials.

8.
Sci Adv ; 5(9): eaaw8693, 2019 09.
Article in English | MEDLINE | ID: mdl-31548985

ABSTRACT

We present a study of a graphene-based Josephson junction with dedicated side gates carved from the same sheet of graphene as the junction itself. These side gates are highly efficient and allow us to modulate carrier density along either edge of the junction in a wide range. In particular, in magnetic fields in the 1- to 2-T range, we are able to populate the next Landau level, resulting in Hall plateaus with conductance that differs from the bulk filling factor. When counter-propagating quantum Hall edge states are introduced along either edge, we observe a supercurrent localized along that edge of the junction. Here, we study these supercurrents as a function of magnetic field and carrier density.

SELECTION OF CITATIONS
SEARCH DETAIL
...