Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Neurosci ; 17: 1200360, 2023.
Article in English | MEDLINE | ID: mdl-37361995

ABSTRACT

Neural stem cells (NSCs) persist in specific brain germinative niches and sustain neurogenesis throughout life in adult mammals. In addition to the two major stem cell niches in the subventricular zone and the hippocampal dentate gyrus, the area postrema located in the brainstem has been identified as a neurogenic zone as well. NSCs are regulated by signals from the microenvironment that adjust stem cell response to the needs of the organism. Evidence accumulated over the past decade indicates that Ca2+ channels play pivotal functions in NSC maintenance. In this study, we explored in area postrema NSCs the presence and roles of a subset of Ca2+ channels, the store-operated Ca2+ channels (SOCs) that have the capacity to transduce extracellular signals into Ca2+ signals. Our data show that NSCs derived from the area postrema express TRPC1 and Orai1, known to form SOCs, as well as their activator STIM1. Ca2+ imaging indicated that NSCs exhibit store-operated Ca2+ entries (SOCEs). Pharmacological blockade of SOCEs with SKF-96365, YM-58483 (also known as BTP2) or GSK-7975A resulted in decreased NSC proliferation and self-renewal, indicating a major role for SOCs in maintaining NSC activity within the area postrema. Furthermore, our results show that leptin, an adipose tissue-derived hormone whose ability to control energy homeostasis is dependent on the area postrema, decreased SOCEs and reduced self-renewal of NSCs in the area postrema. As aberrant SOC function has been linked to an increasing number of diseases, including brain disorders, our study opens new perspectives for NSCs in brain pathophysiology.

2.
Stem Cells ; 41(3): 252-259, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36635952

ABSTRACT

Mainly known for its role in immune defense and inflammation, interleukin 22 (IL-22) has emerged over the past decade as a cytokine involved in the adaptation of stem/progenitor cell activity for tissue homeostasis and repair. IL-22 is present in the brain, which harbors neural stem cells (NSC) in specific niches of which the ventricular-subventricular zone (V-SVZ) is the most important. In this study, we examined a possible effect of IL-22 on NSC in the adult mouse brain. We demonstrate that the IL-22 receptor is expressed in the V-SVZ, mainly in NSC characterized by their SOX2 expression. Addition of IL-22 to V-VSZ cell cultures resulted in an increase in NSC self-renewal, associated with a shift in NSC division mode towards symmetric proliferative divisions at the expense of differentiative divisions. Conversely, loss of IL-22 in knockout mice led to a decrease in neurosphere yield, suggesting a reduction in the NSC population, which was confirmed by the decrease in cells retaining BrdU labeling in IL-22 knockout mice. Our study supports that IL-22 is involved in the development and/or maintenance of V-VSZ NSC and opens new avenues to further investigate the role of IL-22 in NSC biology in health and disease.


Subject(s)
Cell Self Renewal , Neural Stem Cells , Mice , Animals , Neurogenesis , Brain/metabolism , Neural Stem Cells/metabolism , Cell Differentiation , Mice, Knockout , Interleukins/metabolism , Cell Proliferation , Interleukin-22
3.
Cancers (Basel) ; 13(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34298643

ABSTRACT

Glioblastoma is the most frequent and deadly form of primary brain tumors. Despite multimodal treatment, more than 90% of patients experience tumor recurrence. Glioblastoma contains a small population of cells, called glioblastoma stem cells (GSC) that are highly resistant to treatment and endowed with the ability to regenerate the tumor, which accounts for tumor recurrence. Transcriptomic studies disclosed an enrichment of calcium (Ca2+) signaling transcripts in GSC. In non-excitable cells, store-operated channels (SOC) represent a major route of Ca2+ influx. As SOC regulate the self-renewal of adult neural stem cells that are possible cells of origin of GSC, we analyzed the roles of SOC in cultures of GSC previously derived from five different glioblastoma surgical specimens. Immunoblotting and immunocytochemistry experiments showed that GSC express Orai1 and TRPC1, two core SOC proteins, along with their activator STIM1. Ca2+ imaging demonstrated that SOC support Ca2+ entries in GSC. Pharmacological inhibition of SOC-dependent Ca2+ entries decreased proliferation, impaired self-renewal, and reduced expression of the stem cell marker SOX2 in GSC. Our data showing the ability of SOC inhibitors to impede GSC self-renewal paves the way for a strategy to target the cells considered responsible for conveying resistance to treatment and tumor relapse.

4.
Front Cell Neurosci ; 14: 600018, 2020.
Article in English | MEDLINE | ID: mdl-33281564

ABSTRACT

The brain of adult mammals, including humans, contains neural stem cells (NSCs) located within specific niches of which the ventricular-subventricular zone (V-SVZ) is the largest one. Under physiological conditions, NSCs proliferate, self-renew and produce new neurons and glial cells. Several recent studies established that oncogenic mutations in adult NSCs of the V-SVZ are responsible for the emergence of malignant primary brain tumors called glioblastoma. These aggressive tumors contain a small subpopulation of cells, the glioblastoma stem cells (GSCs), that are endowed with proliferative and self-renewal abilities like NSCs from which they may arise. GSCs are thus considered as the cells that initiate and sustain tumor growth and, because of their resistance to current treatments, provoke tumor relapse. A growing body of studies supports that Ca2+ signaling controls a variety of processes in NSCs and GSCs. Ca2+ is a ubiquitous second messenger whose fluctuations of its intracellular concentrations are handled by channels, pumps, exchangers, and Ca2+ binding proteins. The concerted action of the Ca2+ toolkit components encodes specific Ca2+ signals with defined spatio-temporal characteristics that determine the cellular responses. In this review, after a general overview of the adult brain NSCs and GSCs, we focus on the multiple roles of the Ca2+ toolkit in NSCs and discuss how GSCs hijack these mechanisms to promote tumor growth. Extensive knowledge of the role of the Ca2+ toolkit in the management of essential functions in healthy and pathological stem cells of the adult brain should help to identify promising targets for clinical applications.

5.
Eur J Pharmacol ; 855: 30-39, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31028740

ABSTRACT

Malignant gliomas are the most common primary brain tumors. Due to both their invasive nature and resistance to multimodal treatments, these tumors have a very high percentage of recurrence leading in most cases to a rapid fatal outcome. Recent data demonstrated that neural stem/progenitor cells possess an inherent ability to migrate towards glioma cells, track them in the brain and reduce their growth. However, mechanisms involved in these processes have not been explored in-depth. In the present report, we investigated interactions between glioma cells and neural stem/progenitor cells derived from the subventricular zone, the major brain stem cell niche. Our data show that neural stem/progenitor cells are attracted by cultured glioma-derived factors. Using multiple approaches, we demonstrate for the first time that the vitamin K-dependent factor protein S produced by glioma cells is involved in tumor tropism through a mechanism involving the tyrosine kinase receptor Tyro3 that, in turn, is expressed by neural stem/progenitor cells. Neural stem/progenitor cells decrease the growth of both glioma cell cultures and clonogenic population. Cultured neural stem/progenitor cells also engulf, by phagocytosis, apoptotic glioma cell-derived fragments and this mechanism depends on the exposure of phosphatidylserine eat-me signal and is stimulated by protein S. The disclosure of a role of protein S/Tyro3 axis in neural stem/progenitor cell tumor-tropism and the demonstration of a phagocytic activity of neural stem/progenitor cells towards dead glioma cells that is regulated by protein S open up new perspectives for both stem cell biology and brain physiopathology.


Subject(s)
Brain/pathology , Cell Movement , Glioma/pathology , Neural Stem Cells/pathology , Phagocytes/cytology , Protein S/metabolism , Vitamin K/metabolism , Animals , Apoptosis , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Rats
6.
Stem Cells ; 36(5): 761-774, 2018 05.
Article in English | MEDLINE | ID: mdl-29359518

ABSTRACT

The subventricular zone (SVZ) is the major stem cell niche in the brain of adult mammals. Within this region, neural stem cells (NSC) proliferate, self-renew and give birth to neurons and glial cells. Previous studies underlined enrichment in calcium signaling-related transcripts in adult NSC. Because of their ability to mobilize sustained calcium influxes in response to a wide range of extracellular factors, store-operated channels (SOC) appear to be, among calcium channels, relevant candidates to induce calcium signaling in NSC whose cellular activities are continuously adapted to physiological signals from the microenvironment. By Reverse Transcription Polymerase Chain Reaction (RT-PCR), Western blotting and immunocytochemistry experiments, we demonstrate that SVZ cells express molecular actors known to build up SOC, namely transient receptor potential canonical 1 (TRPC1) and Orai1, as well as their activator stromal interaction molecule 1 (STIM1). Calcium imaging reveals that SVZ cells display store-operated calcium entries. Pharmacological blockade of SOC with SKF-96365 or YM-58483 (also called BTP2) decreases proliferation, impairs self-renewal by shifting the type of SVZ stem cell division from symmetric proliferative to asymmetric, thereby reducing the stem cell population. Brain section immunostainings show that TRPC1, Orai1, and STIM1 are expressed in vivo, in SOX2-positive SVZ NSC. Injection of SKF-96365 in brain lateral ventricle diminishes SVZ cell proliferation and reduces the ability of SVZ cells to form neurospheres in vitro. The present study combining in vitro and in vivo approaches uncovers a major role for SOC in the control of SVZ NSC population and opens new fields of investigation for stem cell biology in health and disease. Stem Cells 2018;36:761-774.


Subject(s)
Brain/cytology , Calcium/metabolism , Cell Self Renewal/physiology , Neural Stem Cells/cytology , Adult Stem Cells/metabolism , Animals , Calcium Channels/metabolism , Calcium Signaling/physiology , Cell Proliferation/physiology , Mice, Inbred C57BL , Neurogenesis/physiology , Neurons/metabolism
7.
Stem Cells ; 33(2): 515-25, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25308179

ABSTRACT

Neural stem cells, whose major reservoir in the adult mammalian brain is the subventricular zone (SVZ), ensure neuropoiesis, a process during which many generated cells die. Removal of dead cells and debris by phagocytes is necessary for tissue homeostasis. Using confocal and electron microscopy, we demonstrate that cultured SVZ cells phagocytose both 1 and 2 µm latex beads and apoptotic cell-derived fragments. We determine by flow cytometry that phagocytic cells represent more than 10% of SVZ cultured cells. Phenotyping of SVZ cells using nestin, GFAP, Sox2, or LeX/SSEA and quantification of aldehyde dehydrogenase (ALDH) activity, reveals that cells with neural stem-cell features phagocytose and represent more than 30% of SVZ phagocytic cells. In vivo, nestin-, Sox2-, and ALDH-expressing neural stem-like cells engulfed latex beads or apoptotic cell-derived fragments that were injected into mice lateral brain ventricles. We show also that SVZ cell phagocytic activity is an active process, which depends both on cytoskeleton dynamic and on recognition of phosphatidylserine eat-me signal, and is stimulated by the vitamin K-dependent factor protein S (ProS). ProS neutralizing antibodies inhibit SVZ cell phagocytic activity and exposure of SVZ cells to apoptotic cell-derived fragments induces a transient Mer tyrosine kinase receptor (MerTK) phosphorylation. Conversely, MerTK blocking antibodies impair both basal and ProS-stimulated SVZ cell phagocytic activity. By revealing that neural stem-like cells act within the SVZ neurogenic niche as phagocytes and that the ProS/MerTK path represents an endogenous regulatory mechanism for SVZ cell phagocytic activity, the present report opens-up new perspectives for both stem cell biology and brain physiopathology.


Subject(s)
Lateral Ventricles/metabolism , Neural Stem Cells/metabolism , Phagocytosis/physiology , Protein S/metabolism , Signal Transduction/physiology , Animals , Antigens, Differentiation/metabolism , Cells, Cultured , Lateral Ventricles/cytology , Mice , Neural Stem Cells/cytology , Phagocytosis/drug effects , Protein S/pharmacology , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction/drug effects , c-Mer Tyrosine Kinase
8.
Neurosci Res ; 43(1): 57-67, 2002 May.
Article in English | MEDLINE | ID: mdl-12074841

ABSTRACT

Previous experiments have established that grafts of embryonic day (E) 16 frontal cortex placed into the occipital cortex of postnatal day (P) 0-P1 rats selectively attract axons from the ventrolateral and ventromedial (VL/VM) thalamic nuclei (Frappé et al., Exp. Neurol. 169 (2001) 264). The present study was therefore undertaken to identify any possible maturation-promoting activity of the cortex on VL/VM thalamic cells. In a first step, a primary culture of VL/VM thalamic cells taken from P0-P1 rats was developed. Neurons, glial cells and a few immature, nestin immunoreactive cells were identified in the culture. In a second step, VL/VM thalamic cells that had been maintained in vitro for 4-5 days were cultured for 7 additional days in isolation (control condition) or with an E16 or P5 explant of frontal or occipital cortex placed on a microporous membrane. In control conditions, the total cell population and the percentage of MAP-2 immunoreactive neurons were not modified with time. In contrast, the percentage of MAP-2 immunoreactive neurons was increased in E16 cortex co-cultures whereas the total cell population was unchanged and the proliferative activity remained very low. Also, the mean number of neurites per neuron was increased but no effect was found on neuritic length. Similar effects on neuronal maturation were found with E16 frontal or occipital cortex explants, indicating a lack of areal specificity. P5 cortex also produced, but to a lesser extent, an increase in percentage of MAP-2 immunoreactive neurons. Further, P5 cortex had no effect on mean number of neurites per neuron but substantially promoted elongation of neuronal processes. We propose that in addition to their well-established survival promoting effect, diffusible molecules released by embryonic and early postnatal cortex can promote in vitro the maturation of thalamic neurons.


Subject(s)
Cell Differentiation/physiology , Cerebral Cortex/embryology , Growth Substances/metabolism , Microtubule-Associated Proteins/metabolism , Neural Pathways/embryology , Neurons/metabolism , Thalamus/embryology , Animals , Animals, Newborn , Body Patterning/physiology , Cell Communication/physiology , Cell Division/physiology , Cells, Cultured , Cerebral Cortex/growth & development , Cerebral Cortex/metabolism , Coculture Techniques , Diffusion , Female , Frontal Lobe/embryology , Frontal Lobe/growth & development , Frontal Lobe/metabolism , Immunohistochemistry , Neural Pathways/growth & development , Neural Pathways/metabolism , Neurites/metabolism , Neurites/ultrastructure , Neurons/cytology , Occipital Lobe/embryology , Occipital Lobe/growth & development , Occipital Lobe/metabolism , Pregnancy , Rats , Rats, Wistar , Thalamus/growth & development , Thalamus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...