Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 134(23): 9820-6, 2012 Jun 13.
Article in English | MEDLINE | ID: mdl-22594303

ABSTRACT

Singlet molecular oxygen, O(2)(a(1)Δ(g)), can influence many processes pertinent to the function of biological systems, including events that result in cell death. Many of these processes involve a reaction between singlet oxygen and a given amino acid in a protein. As a result, the behavior of that protein can change, either because of a structural alteration and/or a direct modification of an active site. Surprisingly, however, little is known about rate constants for reactions between singlet oxygen and amino acids when the latter are in a protein. In this report, we demonstrate using five separate proteins, each containing only a single tryptophan residue, that the rate constant for singlet oxygen reaction with tryptophan depends significantly on the position of this amino acid in the protein. Most importantly, the reaction rate constant depends not only on the accessibility of the tryptophan residue to oxygen, but also on factors that characterize the local molecular environment of the tryptophan in the protein. The fact that the local protein environment can either appreciably inhibit or accelerate the reaction of singlet oxygen with a given amino acid can have significant ramifications for singlet-oxygen-mediated events that perturb cell function.


Subject(s)
Proteins/chemistry , Singlet Oxygen/chemistry , Tryptophan/chemistry , Animals , Asparaginase/chemistry , Aspergillus oryzae/chemistry , Aspergillus oryzae/enzymology , Bacillus/chemistry , Bees/chemistry , Escherichia coli/chemistry , Escherichia coli/enzymology , Melitten/chemistry , Micrococcal Nuclease/chemistry , Models, Molecular , Ribonuclease T1/chemistry , Staphylococcus aureus/chemistry , Staphylococcus aureus/enzymology , Subtilisins/chemistry
2.
J Am Chem Soc ; 133(18): 7166-73, 2011 May 11.
Article in English | MEDLINE | ID: mdl-21491861

ABSTRACT

Singlet molecular oxygen, O(2)(a(1)Δ(g)), is an intermediate in a variety of processes pertinent to the function of biological systems, including events that result in cell death. Many of these processes involve a reaction between singlet oxygen and a given protein. It is acknowledged that the behavior of a protein can change upon reaction with singlet oxygen, as a result of a structural alteration and/or a direct chemical modification of an active site. However, the converse, where one considers how the behavior of singlet oxygen can be altered by changes in protein structure, has received little attention. In this report, we use a variety of proteins to demonstrate how the rate constant for singlet oxygen removal by a protein responds to (a) protein denaturation, (b) macromolecular crowding of the protein, (c) ligand binding by the protein, and (d) polymerization of the protein. From one perspective, the data show that the kinetics of singlet oxygen removal can be used to monitor protein dynamics. Most importantly, however, the data indicate that protein structural changes that either reveal or cloak a given amino acid residue can have a measurable effect on the overall rate constant for singlet oxygen removal which, in turn, can have ramifications for singlet-oxygen-mediated intracellular events that perturb cell function.


Subject(s)
Protein Denaturation , Proteins/chemistry , Singlet Oxygen/chemistry , Ligands , Protein Binding
3.
Photochem Photobiol ; 87(3): 671-9, 2011.
Article in English | MEDLINE | ID: mdl-21272007

ABSTRACT

The development of efficient and selective luminescent probes for reactive oxygen species, particularly for singlet molecular oxygen, is currently of great importance. In this study, the photochemical behavior of Singlet Oxygen Sensor Green(®) (SOSG), a commercially available fluorescent probe for singlet oxygen, was examined. Despite published claims to the contrary, the data presented herein indicate that SOSG can, in fact, be incorporated into a living mammalian cell. However, for a number of reasons, caution must be exercised when using SOSG. First, it is shown that the immediate product of the reaction between SOSG and singlet oxygen is, itself, an efficient singlet oxygen photosensitizer. Second, SOSG appears to efficiently bind to proteins which, in turn, can influence uptake by a cell as well as behavior in the cell. As such, incorrect use of SOSG can yield misleading data on yields of photosensitized singlet oxygen production, and can also lead to photooxygenation-dependent adverse effects in the system being investigated.


Subject(s)
Fluorescent Dyes/analysis , Photosensitizing Agents/analysis , Singlet Oxygen , Artifacts , Female , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , HeLa Cells , Humans , Light , Microscopy, Fluorescence , Photochemical Processes/radiation effects , Photosensitizing Agents/chemistry , Photosensitizing Agents/metabolism , Single-Cell Analysis/methods , Singlet Oxygen/analysis , Singlet Oxygen/metabolism , Solutions/chemistry , Solutions/metabolism , Spectrum Analysis
4.
ACS Nano ; 4(12): 7475-80, 2010 Dec 28.
Article in English | MEDLINE | ID: mdl-21090671

ABSTRACT

DNA origami, the folding of a long single-stranded DNA sequence (scaffold strand) by hundreds of short synthetic oligonucleotides (staple strands) into parallel aligned helices, is a highly efficient method to form advanced self-assembled DNA-architectures. Since molecules and various materials can be conjugated to each of the short staple strands, the origami method offers a unique possibility of arranging molecules and materials in well-defined positions on a structured surface. Here we combine the action of light with AFM and DNA nanostructures to study the production of singlet oxygen from a single photosensitizer molecule conjugated to a selected DNA origami staple strand on an origami structure. We demonstrate a distance-dependent oxidation of organic moieties incorporated in specific positions on DNA origami by singlet oxygen produced from a single photosensitizer located at the center of each origami.


Subject(s)
DNA/chemistry , Microscopy, Atomic Force , Nucleic Acid Conformation , Photosensitizing Agents/pharmacology , Singlet Oxygen/chemistry , Models, Molecular , Nanostructures/chemistry
6.
J Am Chem Soc ; 132(23): 8098-105, 2010 Jun 16.
Article in English | MEDLINE | ID: mdl-20491478

ABSTRACT

Singlet molecular oxygen, O(2)(a(1)Delta(g)), is an intermediate in a variety of oxygenation reactions. The reactivity of singlet oxygen in a given system is influenced, in part, by competitive solvent-dependent channels that deactivate singlet oxygen in a nonradiative process. It has long been considered that these deactivation channels depend only slightly on temperature. This conclusion has been incorporated into the accepted empirically derived model of electronic-to-vibrational energy transfer used to account for the effect of solvent on the lifetime of singlet oxygen, tau(Delta). The current study reveals that tau(Delta), in fact, can depend quite significantly on temperature in certain solvents (e.g., D(2)O and benzene-d(6)). These results can have practical ramifications in studies of singlet oxygen reactivity. From a fundamental perspective, these data indicate that aspects of the model for nonradiative deactivation of singlet oxygen need to be re-evaluated.

7.
J Phys Chem A ; 114(7): 2518-25, 2010 Feb 25.
Article in English | MEDLINE | ID: mdl-20121177

ABSTRACT

The unique optical properties of squaraines render these molecules useful for applications that range from xerography to photodynamic therapy. In this regard, squaraines derived from the condensation of nitrogen-based heterocycles and squaric acid have many promising attributes. Key solution-phase photophysical properties of six such squaraines have been characterized in this study. One feature of these molecules is a pronounced absorption band in the region approximately 600-720 nm that has significant spectral overlap with the fluorescence band (i.e., the Stokes shift is small). As such, effects of emission/reabsorption yield unique excitation wavelength dependent phenomena that are manifested in quantum yields of both fluorescence and sensitized singlet oxygen production. Comparatively small squaraine-sensitized yields of singlet oxygen production and, independently, large rate constants for squaraine-induced deactivation of singlet oxygen are consistent with a model in which there is appreciable intra- and intermolecular charge-transfer in the squaraine and squaraine-oxygen encounter complex, respectively. The results reported herein should be useful in the further development of these compounds for a range of oxygen-dependent applications.


Subject(s)
Cyclobutanes/chemistry , Fluorescent Dyes/chemistry , Phenols/chemistry , Electrochemistry , Molecular Structure , Photochemistry , Quantum Theory , Singlet Oxygen/chemistry , Stereoisomerism
9.
Langmuir ; 26(6): 4188-95, 2010 Mar 16.
Article in English | MEDLINE | ID: mdl-20000431

ABSTRACT

Silica shells were directly coated onto surfactant-capped gold nanorods by a simple one-step method. The procedure required no intermediate coating of the gold nanorod prior to the formation of the smooth silica shell, the thickness of which could be accurately controlled over the range 60-150 nm. These silica-encased gold nanorods were then covered with a gold overcoat to yield nanoparticles with unique optical properties that varied with the thicknesses of both the silica layer and the gold overcoat. Using these bulk solution-phase techniques, homogeneous distributions of gold-silica-gold layered nanoparticles with a pronounced plasmon extinction band in the near-IR (i.e., approximately 900-1700 nm) are readily and reproducibly prepared. More specifically, when using a core gold nanorod whose dimensions yield a plasmon band in the visible region of the spectrum (e.g., approximately 685 nm), the effect of the gold overcoat is to produce a broad plasmon band that is red-shifted by as much as approximately 1000 nm. As such, these multilaminate particles should be of interest as a convenient tool to enhance weak near-IR radiative transitions (e.g., singlet oxygen, O(2)(a(1)Delta(g)), phosphorescence at 1270 nm).

10.
J Org Chem ; 74(23): 9094-104, 2009 Dec 04.
Article in English | MEDLINE | ID: mdl-19904908

ABSTRACT

Substituent-dependent features and properties of the sensitizer play an important role in the photosensitized production of singlet oxygen, O(2)(a(1)Delta(g)). In this work, we systematically examine the effect of molecular changes in the sensitizer on the efficiency of singlet oxygen production using, as the sensitizer, oligophenylene-vinylene derivatives designed to optimally absorb light in a nonlinear two-photon process. We demonstrate that one cannot always rely on rule-of-thumb guidelines when attempting to construct efficient two-photon singlet oxygen sensitizers. Rather, as a consequence of behavior that can deviate from the norm, a full investigation of the photophysical properties of the system is generally required. For example, it is acknowledged that the introduction of a ketone moiety to the sensitizer chromophore often results in more efficient production of singlet oxygen. However, we show here that the introduction of a carbonyl into a given phenylene-vinylene can, rather, have adverse effects on the yield of singlet oxygen produced. Using these molecules, we show that care must also be exercised when using qualitative symmetry-derived arguments to predict the relationship between one-and two-photon absorption spectra.


Subject(s)
Benzene Derivatives/chemistry , Photochemical Processes , Singlet Oxygen/chemistry , Vinyl Compounds/chemistry , Ketones , Photons
11.
J Phys Chem A ; 113(37): 9965-73, 2009 Sep 17.
Article in English | MEDLINE | ID: mdl-19702257

ABSTRACT

The extent to which an intermolecular charge-transfer (CT) state can influence excited-state relaxation dynamics is examined for the system wherein 1-methylnaphthalene (MN) interacts with molecular oxygen. The MN-O2 system is ideally suited for such a study because excited states can be independently accessed by (i) irradiation into the discrete MN-O2 CT absorption band, (ii) direct irradiation of MN, and (iii) the photosensitized production of triplet state MN. Changing the solvent in which the MN-O2 system is dissolved influences the MN-dependent photoinduced production of singlet oxygen, O2(a1Delta(g)), which, in turn, yields information about fundamental concepts of state mixing. Results of experiments conducted in the polar solvent acetonitrile differ substantially from those obtained from the nonpolar solvent cyclohexane. The data reflect differences in the energy and behavior of the solvent-equilibrated MN-O2 CT state, CT(SE), and the extent to which this state couples to other states of the MN-O2 system. In particular, the data are consistent with a model where both the MN triplet state and the MN-O2 CT(SE) state are immediate precursors of O2(a1Delta(g)). Although the work reported herein is of direct and practical significance for the wide variety of systems in which O2(a1Delta(g)) can be produced upon irradiation, it also serves as an accessible model for a study of general issues pertinent to state mixing and the solvent-dependent dynamics of CT-mediated excited-state relaxation.

12.
J Phys Chem A ; 113(24): 6648-56, 2009 Jun 18.
Article in English | MEDLINE | ID: mdl-19514786

ABSTRACT

Beta-carboline (betaC) alkaloids are present in a wide range of biological systems and play a variety of significant photodependent roles. In this work, a study of the aqueous solution-phase photochemistry, photophysics, and spectroscopy of three important betaCs [norharmane (nHo), harmane (Ho), and harmine (Ha)] and two betaC derivatives [N-methylnorharmane (N-Me-nHo) and N-methylharmane (N-Me-Ho)] upon one- and two-photon excitation is presented. The results obtained depend significantly on pH, the ambient oxygen concentration, and the betaC substituent and provide unique insight into a variety of fundamental photophysical phenomena. The data reported herein should not only help to understand the roles played by betaC alkaloids in biological systems but should also help in the development of methods by which the photoinduced behavior of these important compounds can be controlled.


Subject(s)
Carbolines/chemistry , Photons , Chromatography, High Pressure Liquid , Fluorescence , Hydrogen Peroxide/analysis , Hydrogen-Ion Concentration , Molecular Structure , Photochemistry , Quantum Theory , Solutions , Spectrophotometry, Ultraviolet/methods , Time Factors , Water/chemistry
14.
Phys Chem Chem Phys ; 10(8): 1177-91, 2008 Feb 28.
Article in English | MEDLINE | ID: mdl-18270620

ABSTRACT

Two-photon excitation spectra have been recorded over the large spectral range of 540-1000 nm for five phenylene-vinylene oligomers that differ in the length of the conjugated pi system. The significant changes observed in the two-photon excitation spectra and absorption cross sections as a function of this systematic change in the chromophore are discussed in light of (1) the corresponding one-photon absorption spectra and (2) high-level density functional response theory calculations performed on analogues of these systems. The results obtained illustrate one way to exploit parameters that influence nonlinear optical properties in large organic molecules. Specifically, data are provided to indicate that when the frequency of the laser used in the two-photon experiment is nearly-resonant with an allowed one-photon transition, significant increases in the two-photon absorption cross section can be realized. This phenomenon of the so-called resonance enhancement allows for greater control in obtaining an optimal response when using existing two-photon chromophores, and provides a much-needed guide for the systematic development and efficient use of two-photon singlet oxygen sensitizers.

15.
J Phys Chem A ; 111(26): 5756-67, 2007 Jul 05.
Article in English | MEDLINE | ID: mdl-17564419

ABSTRACT

Singlet molecular oxygen, O2(a1Deltag), can be efficiently produced in a photosensitized process using either one- or two-photon irradiation. The aromatic ketone 1-phenalenone (PN) is an established one-photon singlet oxygen sensitizer with many desirable attributes for use as a standard. In the present work, photophysical properties of two other aromatic ketones, pyrene-1,6-dione (PD) and benzo[cd]pyren-5-one (BP), are reported and compared to those of PN. Both PD and BP sensitize the production of singlet oxygen with near unit quantum efficiency in a nonpolar (toluene) and a polar (acetonitrile) solvent. With their more extensive pi networks, the one-photon absorption spectra for PD and BP extend out to longer wavelengths than that for PN, thus providing increased flexibility for sensitizer excitation over the range approximately 300-520 nm. Moreover, PD and BP have much larger two-photon absorption cross sections than PN over the range 655-840 nm which, in turn, results in amounts of singlet oxygen that are readily detected in optical experiments. One- and two-photon absorption spectra of PD and BP obtained using high-level calculations model the salient features of the experimental data well. In particular, the ramifications of molecular symmetry are clearly reflected in both the experimental and calculated spectra. The use of PD and BP as standards for both the one- and two-photon photosensitized production of singlet oxygen is expected to facilitate the development of new sensitizers for application in singlet-oxygen-based imaging experiments.

16.
J Phys Chem A ; 111(21): 4573-83, 2007 May 31.
Article in English | MEDLINE | ID: mdl-17480060

ABSTRACT

The yield of singlet molecular oxygen, O2(a(1)Delta(g)), produced in a photosensitized process can be very susceptible to environmental perturbations. In the present study, protonation of photosensitizers whose chromophores contain amine functional groups is shown to adversely affect the singlet oxygen yield. Specifically, for bis(amino) phenylene vinylenes dissolved both in water and in toluene, addition of a protic acid to the solution alters properties of the system that, in turn, result in a decrease in the efficiency of singlet oxygen production. In light of previous studies on other molecules where protonation-dependent changes in the yield of photosensitized singlet oxygen production have been ascribed to changes in the quantum yield of the sensitizer triplet state, Phi(T), and to possible changes in the triplet state energy, E(T), our results demonstrate that this photosystem can respond to protonation in other ways. Although protonation-dependent changes in the amount of charge-transfer character in the sensitizer-oxygen complex may influence the singlet oxygen yield, it is likely that other processes also play a role. These include (a) protonation-dependent changes in sensitizer aggregation and (b) nonradiative channels for sensitizer deactivation that are enhanced as a consequence of the reversible protonation/deprotonation of the chromophore. The data obtained, although complicated, are relevant for understanding and ultimately controlling the behavior of photosensitizers in systems with microheterogeneous domains that have appreciable pH gradients. These data are particularly important given the use of such bi-basic chromophores as two-photon singlet oxygen sensitizers, with applications in spatially resolved singlet oxygen experiments (e.g., imaging experiments).


Subject(s)
Light , Photosensitizing Agents/pharmacology , Singlet Oxygen/chemistry , Singlet Oxygen/metabolism , Water/chemistry , Energy Transfer , Hydrogen-Ion Concentration , Oxygen/chemistry , Oxygen/metabolism , Photochemistry , Photosensitizing Agents/chemistry , Protons , Quantum Theory , Solutions/chemistry , Spectrum Analysis , Thermodynamics , Time Factors
17.
J Am Chem Soc ; 129(16): 5188-99, 2007 Apr 25.
Article in English | MEDLINE | ID: mdl-17397157

ABSTRACT

Porphycenes are structural isomers of porphyrins that have many unique properties and features. In the present work, the resonant two-photon absorption of 2,7,12,17-tetraphenylporphycene (TPPo) and its palladium(II) complex (PdTPPo) has been investigated. The data obtained are compared to those from the isomeric compound, meso-tetraphenylporphyrin (TPP). Detection of phosphorescence from singlet molecular oxygen, O2(a(1)Delta(g)), produced upon irradiation of these compounds, was used to obtain two-photon excitation spectra and to quantify two-photon absorption cross sections, delta. In the spectral region of 750-850 nm, the two-photon absorption cross sections at the band maxima for both TPPo and PdTPPo, delta = 2280 and 1750 GM, respectively, are significantly larger than that for TPP. This difference is attributed to the phenomenon of so-called resonance enhancement; for the porphycenes, the two-photon transition is nearly resonant with a comparatively intense one-photon Q-band transition. The results of quantum mechanical calculations using density functional quadratic response theory are in excellent agreement with the experimental data and, as such, demonstrate that comparatively high-level quantum chemical methods can be used to interpret and predict nonlinear optical properties from such large molecular systems. One important point realized through these experiments and calculations is that one must exercise caution when using qualitative molecular-symmetry-derived arguments to predict the expected spectral relationship between allowed one- and two-photon transitions. From a practical perspective, this study establishes that, in comparison to porphyrins and other tetrapyrrolic macrocyclic systems, porphycenes exhibit many desirable attributes for use as sensitizers in two-photon initiated photodynamic therapy.


Subject(s)
Metalloporphyrins/chemistry , Photochemotherapy/methods , Porphyrins/chemistry , Isomerism , Optics and Photonics , Protons , Spectrophotometry
18.
J Phys Chem A ; 110(23): 7375-85, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16759125

ABSTRACT

Singlet molecular oxygen, O2(a1Deltag), can be produced upon resonant two-photon excitation of a photosensitizer. In the present study, two molecules that have received recent attention in studies of nonlinear organic materials were characterized for use as standard two-photon sensitizers: 2,5-dicyano-1,4-bis(2-(4-diphenylaminophenyl)vinyl)-benzene, CNPhVB, and 2,5-dibromo-1,4-bis(2-(4-diphenylaminophenyl)vinyl)-benzene, BrPhVB. Absolute two-photon absorption cross sections, delta, were independently determined for these molecules using two techniques that have heretofore not been applied to this problem: an optical technique (time-resolved detection of O2(a1Deltag) phosphorescence) and a nonoptical technique (a time-resolved laser-induced optoacoustic experiment). For experiments performed in toluene, a solvent commonly used for such nonlinear optical studies, appreciable absorption by the solvent itself complicates the measurements. In cyclohexane, however, delta values could be obtained without the interfering effects of solvent absorption. On the basis of these results, we discuss key aspects of the respective techniques used to quantify values of delta. The information reported herein provides some explanation for the lack of consensus that is routinely observed in published values of delta, certainly for experiments performed in aromatic solvents such as toluene and benzene.


Subject(s)
Benzene Derivatives/chemistry , Optics and Photonics , Singlet Oxygen/chemistry , Vinyl Compounds/chemistry , Molecular Structure , Photochemistry , Photons , Sensitivity and Specificity , Solvents/chemistry , Time Factors
19.
J Org Chem ; 70(18): 7065-79, 2005 Sep 02.
Article in English | MEDLINE | ID: mdl-16122224

ABSTRACT

[reaction: see text] The synthesis and characterization of water-soluble singlet oxygen sensitizers with a phenylene-vinylene motif is presented. The principal motivation for this study was to better understand specific features of a water-soluble molecule that influence the photosensitized production of singlet oxygen upon nonlinear, two-photon excitation of that molecule. To achieve water solubility, sensitizers were synthesized with ionic as well as nonionic substituents. In the ionic approach, salts of N-methylated pyridine, benzothiazole, and 1-methyl-piperazine moieties were used, as were aryl-substituted sulfonic acid moieties. In the nonionic approach, aryl-substituted triethylene glycol moieties were used. Selected photophysical properties of the compounds synthesized were determined, including singlet oxygen quantum yields. Of the molecules examined, the most efficient singlet oxygen sensitizers had triethylene glycol units as the functional group that imparted water solubility. Molecules containing the ionic moieties did not make singlet oxygen in appreciable yield nor did they efficiently fluoresce. Rather, for these latter molecules, rapid charge-transfer-mediated non-radiative processes appear to dominate excited state deactivation.


Subject(s)
Photons , Photosensitizing Agents/chemical synthesis , Singlet Oxygen/chemistry , Drug Stability , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...