Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Semantics ; 15(1): 9, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845042

ABSTRACT

BACKGROUND: In healthcare, an increasing collaboration can be noticed between different caregivers, especially considering the shift to homecare. To provide optimal patient care, efficient coordination of data and workflows between these different stakeholders is required. To achieve this, data should be exposed in a machine-interpretable, reusable manner. In addition, there is a need for smart, dynamic, personalized and performant services provided on top of this data. Flexible workflows should be defined that realize their desired functionality, adhere to use case specific quality constraints and improve coordination across stakeholders. User interfaces should allow configuring all of this in an easy, user-friendly way. METHODS: A distributed, generic, cascading reasoning reference architecture can solve the presented challenges. It can be instantiated with existing tools built upon Semantic Web technologies that provide data-driven semantic services and constructing cross-organizational workflows. These tools include RMLStreamer to generate Linked Data, DIVIDE to adaptively manage contextually relevant local queries, Streaming MASSIF to deploy reusable services, AMADEUS to compose semantic workflows, and RMLEditor and Matey to configure rules to generate Linked Data. RESULTS: A use case demonstrator is built on a scenario that focuses on personalized smart monitoring and cross-organizational treatment planning. The performance and usability of the demonstrator's implementation is evaluated. The former shows that the monitoring pipeline efficiently processes a stream of 14 observations per second: RMLStreamer maps JSON observations to RDF in 13.5 ms, a C-SPARQL query to generate fever alarms is executed on a window of 5 s in 26.4 ms, and Streaming MASSIF generates a smart notification for fever alarms based on severity and urgency in 1539.5 ms. DIVIDE derives the C-SPARQL queries in 7249.5 ms, while AMADEUS constructs a colon cancer treatment plan and performs conflict detection with it in 190.8 ms and 1335.7 ms, respectively. CONCLUSIONS: Existing tools built upon Semantic Web technologies can be leveraged to optimize continuous care provisioning. The evaluation of the building blocks on a realistic homecare monitoring use case demonstrates their applicability, usability and good performance. Further extending the available user interfaces for some tools is required to increase their adoption.


Subject(s)
Home Care Services , Workflow , Semantics , Humans
2.
J Biomed Inform ; 117: 103750, 2021 05.
Article in English | MEDLINE | ID: mdl-33774204

ABSTRACT

Clinical decision support systems are assisting physicians in providing care to patients. However, in the context of clinical pathway management such systems are rather limited as they only take the current state of the patient into account and ignore the possible evolvement of that state in the future. In the past decade, the availability of big data in the healthcare domain did open a new era for clinical decision support. Machine learning technologies are now widely used in the clinical domain, nevertheless, mostly as a tool for disease prediction. A tool that not only predicts future states, but also enables adaptive clinical pathway management based on these predictions is still in need. This paper introduces weighted state transition logic, a logic to model state changes based on actions planned in clinical pathways. Weighted state transition logic extends linear logic by taking weights - numerical values indicating the quality of an action or an entire clinical pathway - into account. It allows us to predict the future states of a patient and it enables adaptive clinical pathway management based on these predictions. We provide an implementation of weighted state transition logic using semantic web technologies, which makes it easy to integrate semantic data and rules as background knowledge. Executed by a semantic reasoner, it is possible to generate a clinical pathway towards a target state, as well as to detect potential conflicts in the future when multiple pathways are coexisting. The transitions from the current state to the predicted future state are traceable, which builds trust from human users on the generated pathway.


Subject(s)
Critical Pathways , Decision Support Systems, Clinical , Humans , Logic , Machine Learning , Semantic Web
SELECTION OF CITATIONS
SEARCH DETAIL
...