Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(15): e2401632121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38568970

ABSTRACT

Photosynthetic protists, known as microalgae, are key contributors to primary production on Earth. Since early in evolution, they coexist with bacteria in nature, and their mode of interaction shapes ecosystems. We have recently shown that the bacterium Pseudomonas protegens acts algicidal on the microalga Chlamydomonas reinhardtii. It secretes a cyclic lipopeptide and a polyyne that deflagellate, blind, and lyse the algae [P. Aiyar et al., Nat. Commun. 8, 1756 (2017) and V. Hotter et al., Proc. Natl. Acad. Sci. U.S.A. 118, e2107695118 (2021)]. Here, we report about the bacterium Mycetocola lacteus, which establishes a mutualistic relationship with C. reinhardtii and acts as a helper. While M. lacteus enhances algal growth, it receives methionine as needed organic sulfur and the vitamins B1, B3, and B5 from the algae. In tripartite cultures with the alga and the antagonistic bacterium P. protegens, M. lacteus aids the algae in surviving the bacterial attack. By combining synthetic natural product chemistry with high-resolution mass spectrometry and an algal Ca2+ reporter line, we found that M. lacteus rescues the alga from the antagonistic bacterium by cleaving the ester bond of the cyclic lipopeptide involved. The resulting linearized seco acid does not trigger a cytosolic Ca2+ homeostasis imbalance that leads to algal deflagellation. Thus, the algae remain motile, can swim away from the antagonistic bacteria and survive the attack. All three involved genera cooccur in nature. Remarkably, related species of Pseudomonas and Mycetocola also act antagonistically against C. reinhardtii or as helper bacteria in tripartite cultures.


Subject(s)
Chlamydomonas reinhardtii , Ecosystem , Bacteria , Eukaryota , Lipopeptides
2.
Nat Commun ; 15(1): 1877, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461182

ABSTRACT

Axonal growth cones mediate axonal guidance and growth regulation. We show that migrating neurons in mice possess a growth cone at the tip of their leading process, similar to that of axons, in terms of the cytoskeletal dynamics and functional responsivity through protein tyrosine phosphatase receptor type sigma (PTPσ). Migrating-neuron growth cones respond to chondroitin sulfate (CS) through PTPσ and collapse, which leads to inhibition of neuronal migration. In the presence of CS, the growth cones can revert to their extended morphology when their leading filopodia interact with heparan sulfate (HS), thus re-enabling neuronal migration. Implantation of an HS-containing biomaterial in the CS-rich injured cortex promotes the extension of the growth cone and improve the migration and regeneration of neurons, thereby enabling functional recovery. Thus, the growth cone of migrating neurons is responsive to extracellular environments and acts as a primary regulator of neuronal migration.


Subject(s)
Growth Cones , Receptor-Like Protein Tyrosine Phosphatases, Class 2 , Mice , Animals , Growth Cones/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Neurogenesis , Axons/metabolism , Chondroitin Sulfates/metabolism , Brain/metabolism , Cells, Cultured
3.
Chemistry ; 30(18): e202304007, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38271285

ABSTRACT

A fully enantioselective, catalytic synthesis of the algal morphogen (-)-thallusin using polyene cyclization chemistry is reported. The synthesis features dedicated precursor design, introduction of a TMS-substituted arene as a regioselective terminator, very high enantiomer excess (ee) on gram scale, and productive scaffold functionalization. Furthermore, an ee determination methodology of thallusin samples was developed, and the ee of biosynthesized thallusin was determined. Fe(III)-uptake studies demonstrated that the cellular uptake of iron facilitated by thallusin derivatives was independent of their morphogenic activity, suggesting their active import via siderophore transporters as a shuttle system.


Subject(s)
Pyridines , Seaweed , Ulva , Ferric Compounds , Stereoisomerism , Siderophores
4.
Int J Antimicrob Agents ; 63(4): 107086, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38218325

ABSTRACT

OBJECTIVES: This study examined the potential of a novel photoactivatable ciprofloxacin to act against bacterial infections and microbiomes related to biliary diseases. It also evaluated treatment by combining the impact of bile acids and antibiotics on biofilms. Innovative strategies were evaluated to address the elusive bile duct microbiome resulting in biofilm-related infections linked to biliary catheters. The healthy biliary system is considered sterile, but bile microbiomes can occur in disease, and these correlate with hepatobiliary diseases. Causes include biofilms that form on internal-external biliary drainage catheters. These biliary catheters were used to noninvasively study the otherwise elusive bile microbiome for a pilot study. METHODS: A new photoactivatable antibiotic was tested for efficacy against human-derived pathogenic bacterial isolates - Salmonella enterica and Escherichia coli - and catheter-derived bile duct microbiomes. In addition, the effect of bile acids on the antibiotic treatment of biofilms was quantified using crystal violet staining, confocal laser scanning microscopy, and biofilm image analysis. Two novel approaches for targeting biliary biofilms were tested. RESULTS: A photoactivated antibiotic based on ciprofloxacin showed efficacy in preventing biofilm formation and reducing bacterial viability without harming eukaryotic cells. Furthermore, combination treatment of antibiotics with bile acids, such as ursodesoxycholic acid, mildly influenced biofilm biomass but reduced bacterial survival within biofilms. CONCLUSION: Bile acids, in addition to their endocrine and paracrine functions, may enhance antibiotic killing of bacterial biofilms compared with antibiotics alone. These approaches hold promise for treating biliary infections such as cholangitis.


Subject(s)
Bile Acids and Salts , Ciprofloxacin , Humans , Ciprofloxacin/pharmacology , Bile Acids and Salts/pharmacology , Pilot Projects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms , Bile Ducts , Catheters , Escherichia coli
5.
Angew Chem Int Ed Engl ; 62(42): e202304901, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37403384

ABSTRACT

Methanobactin OB3b (Mbn-OB3b) is a unique natural product with stunning affinity for copper ions (Ka ≈Cu(I) 1034 ). Here, we report the first total synthesis of Cu(I)-bound methanobactin OB3b featuring as key transformations a cyclodehydration-thioacylation sequence, to generate the conjugated heterocyclic systems, and a copper-templated cyclization, to complete the caged structure of the very sensitive target compound.

6.
Fungal Biol Biotechnol ; 10(1): 14, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37400920

ABSTRACT

BACKGROUND: The terphenylquinones represent an ecologically remarkable class of basidiomycete natural products as they serve as central precursors of pigments and compounds that impact on microbial consortia by modulating bacterial biofilms and motility. This study addressed the phylogenetic origin of the quinone synthetases that assemble the key terphenylquinones polyporic acid and atromentin. RESULTS: The activity of the Hapalopilus rutilans synthetases HapA1, HapA2 and of Psilocybe cubensis PpaA1 were reconstituted in Aspergilli. Liquid chromatography and mass spectrometry of the culture extracts identified all three enzymes as polyporic acid synthetases. PpaA1 is unique in that it features a C-terminal, yet catalytically inactive dioxygenase domain. Combined with bioinformatics to reconstruct the phylogeny, our results demonstrate that basidiomycete polyporic acid and atromentin synthetases evolved independently, although they share an identical catalytic mechanism and release structurally very closely related products. A targeted amino acid replacement in the substrate binding pocket of the adenylation domains resulted in bifunctional synthetases producing both polyporic acid and atromentin. CONCLUSIONS: Our results imply that quinone synthetases evolved twice independently in basidiomycetes, depending on the aromatic α-keto acid substrate. Furthermore, key amino acid residues for substrate specificity were identified and changed which led to a relaxed substrate profile. Therefore, our work lays the foundation for future targeted enzyme engineering.

7.
Commun Chem ; 6(1): 79, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37095327

ABSTRACT

Macrotermitinae termites have farmed fungi in the genus Termitomyces as a food source for millions of years. However, the biochemical mechanisms orchestrating this mutualistic relationship are largely unknown. To deduce fungal signals and ecological patterns that relate to the stability of this symbiosis, we explored the volatile organic compound (VOC) repertoire of Termitomyces from Macrotermes natalensis colonies. Results show that mushrooms emit a VOC pattern that differs from mycelium grown in fungal gardens and laboratory cultures. The abundance of sesquiterpenoids from mushrooms allowed targeted isolation of five drimane sesquiterpenes from plate cultivations. The total synthesis of one of these, drimenol, and related drimanes assisted in structural and comparative analysis of volatile organic compounds (VOCs) and antimicrobial activity testing. Enzyme candidates putatively involved in terpene biosynthesis were heterologously expressed and while these were not involved in the biosynthesis of the complete drimane skeleton, they catalyzed the formation of two structurally related monocyclic sesquiterpenes named nectrianolins.

8.
Org Lett ; 25(7): 1188-1191, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36763903

ABSTRACT

A novel method for C-H cyanation of different pyrans, pyrroles, indoles, and acyclic nucleophilic double bonds using TMSCN, NIS, and Zn(OTf)2 as a catalyst is described. The transformation is conducted under mild conditions tolerating a variety of functional groups. Zn(OTf)2 is likely to serve a dual catalytic role as an activator for TMSCN and for the cyanogen iodide generated in situ. Optimization, the substrate scope, and mechanistic observations are reported. Furthermore, this method is applied in the first total synthesis of the natural product nannozinone B.

9.
New Phytol ; 237(5): 1620-1635, 2023 03.
Article in English | MEDLINE | ID: mdl-36464797

ABSTRACT

The antagonistic bacterium Pseudomonas protegens secretes the cyclic lipopeptide (CLiP) orfamide A, which triggers a Ca2+ signal causing rapid deflagellation of the microalga Chlamydomonas reinhardtii. We performed chemical synthesis of orfamide A derivatives and used an aequorin reporter line to measure their Ca2+ responses. Immobilization of algae was studied using a modulator and mutants of transient receptor potential (TRP)-type channels. By investigating targeted synthetic orfamide A derivatives, we found that N-terminal amino acids of the linear part and the terminal fatty acid region are important for the specificity of the Ca2+ -signal causing deflagellation. Molecular editing indicates that at least two distinct Ca2+ -signaling pathways are triggered. One is involved in deflagellation (Thr3 change, fatty acid tail shortened by 4C), whereas the other still causes an increase in cytosolic Ca2+ in the algal cells, but does not cause substantial deflagellation (Leu1 change, fatty acid hydroxylation, fatty acid changes by 2C). Using mutants, we define four TRP-type channels that are involved in orfamide A signaling; only one (ADF1) responds additionally to low pH. These results suggest that the linear part of the CLiP plays one major role in Ca2+ signaling, and that orfamide A uses a network of algal TRP-type channels for deflagellation.


Subject(s)
Chlamydomonas reinhardtii , Flagella , Flagella/metabolism , Chlamydomonas reinhardtii/metabolism , Bacteria , Signal Transduction , Lipopeptides/pharmacology , Lipopeptides/metabolism
10.
Mar Drugs ; 20(11)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36355014

ABSTRACT

Thallusin, a highly biologically active, phytohormone-like and bacterial compound-inducing morphogenesis of the green tide-forming macroalga Ulva (Chlorophyta), was determined in bacteria and algae cultures. A sensitive and selective method was developed for quantification based on ultra-high-performance liquid chromatography coupled with electrospray ionization and a high-resolution mass spectrometer. Upon C18 solid phase extraction of the water samples, thallusin was derivatized with iodomethane to inhibit the formation of Fe−thallusin complexes interfering with the chromatographic separation. The concentration of thallusin was quantified during the relevant phases of the bacterial growth of Maribacter spp., ranging from 0.16 ± 0.01 amol cell−1 (at the peak of the exponential growth phase) to 0.86 ± 0.13 amol cell−1 (late stationary phase), indicating its accumulation in the growth medium. Finally, we directly determined the concentration of thallusin in algal culture to validate our approach for monitoring applications. Detection and quantification limits of 2.5 and 7.4 pmol L−1, respectively, were reached, which allow for quantifying ecologically relevant thallusin concentrations. Our approach will enable the surveying of thallusin in culture and in nature and will thus contribute to the chemical monitoring of aquaculture.


Subject(s)
Chlorophyta , Pyridines , Ulva , Bacteria , Chromatography, High Pressure Liquid/methods , Plants , Ulva/microbiology
11.
Microbiol Spectr ; 10(5): e0106522, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36094086

ABSTRACT

Light induces the production of ink-blue pentacyclic natural products, the corticin pigments, in the cobalt crust mushroom Terana caerulea. Here, we describe the genetic locus for corticin biosynthesis and provide evidence for a light-dependent dual transcriptional/cotranscriptional regulatory mechanism. Light selectively induces the expression of the corA gene encoding the gateway enzyme, the first described mushroom polyporic acid synthetase CorA, while other biosynthetic genes for modifying enzymes necessary to complete corticin assembly are induced only at lower levels. The strongest corA induction was observed following exposure to blue and UV light. A second layer of regulation is provided by the light-dependent splicing of the three introns in the pre-mRNA of corA. Our results provide insight into the fundamental organization of how mushrooms regulate natural product biosynthesis. IMPORTANCE The regulation of natural product biosyntheses in mushrooms in response to environmental cues is poorly understood. We addressed this knowledge gap and chose the cobalt crust mushroom Terana caerulea as our model. Our work discovered a dual-level regulatory mechanism that connects light as an abiotic stimulus with a physiological response, i.e., the production of dark-blue pigments. Exposure to blue light elicits strongly increased transcription of the gene encoding the gateway enzyme, the polyporic acid synthetase CorA, that catalyzes the formation of the pigment core structure. Additionally, light is a prerequisite for the full splicing of corA pre-mRNA and, thus, its proper maturation. Dual transcriptional/cotranscriptional light-dependent control of fungal natural product biosynthesis has previously been unknown. As it allows the tight control of a key metabolic step, it may be a much more prevalent mechanism among these organisms.


Subject(s)
Agaricales , Biological Products , Agaricales/genetics , Agaricales/metabolism , RNA Precursors/genetics , Cobalt/metabolism , Ligases
12.
Angew Chem Int Ed Engl ; 61(48): e202210220, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36048143

ABSTRACT

The natural product jasplakinolide is widely used to stabilize F-actin. Based on extensive structure-activity relationship studies, we have developed a new generation of photoswitchable jasplakinolides that feature rationally designed red-shifted azobenzene photoswitches. Our lead compound, nOJ, can be activated with longer wavelengths in the visible range (e.g. 440-475 nm) and rapidly returns to its inactive state through thermal relaxation. nOJ enables the reversible control of F-actin dynamics, as shown through live-cell imaging, cell migration, and cell proliferation assays. Short, local irradiation with blue light resulted in highly localized and reversible actin aggregation with subcellular precision. Our optical tool can be useful in diverse fields to study actin dynamics with excellent spatiotemporal resolution.


Subject(s)
Actins , Depsipeptides , Actin Cytoskeleton , Depsipeptides/pharmacology , Cell Movement
13.
Angew Chem Int Ed Engl ; 61(39): e202206746, 2022 09 26.
Article in English | MEDLINE | ID: mdl-35900916

ABSTRACT

Chemical mediators are key compounds for controlling symbiotic interactions in the environment. Here, we disclose a fully stereoselective total synthesis of the algae differentiation factor (-)-thallusin that utilizes sophisticated 6-endo-cyclization chemistry and effective late-stage sp2 -sp2 -couplings using non-toxic reagents. An EC50 of 4.8 pM was determined by quantitative phenotype profiling in the green seaweed Ulva mutabilis (Chlorophyte), underscoring this potent mediator's enormous, pan-species bioactivity produced by symbiotic bacteria. SAR investigations indicate that (-)-thallusin triggers at least two different pathways in Ulva that may be separated by chemical editing of the mediator compound structure.


Subject(s)
Seaweed , Ulva , Pyridines/chemistry , Seaweed/microbiology , Symbiosis , Ulva/genetics , Ulva/metabolism , Ulva/microbiology
14.
Bioorg Med Chem Lett ; 72: 128845, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35700954

ABSTRACT

Ambreinolide is a natural terpenoid with great value for perfume industry and natural product synthesis. Herein we report a novel total synthesis of ambreinolide on multigram-scale that employs a regio- and diastereoselective, high yielding, proton-initiated polyene cyclization using a catalyst easily generated in situ. Molecular structures were unambiguously confirmed by X-ray crystallography.


Subject(s)
Polyenes , Terpenes , Crystallography, X-Ray , Cyclization , Molecular Structure , Polyenes/chemistry , Stereoisomerism , Terpenes/chemistry
15.
Org Biomol Chem ; 20(20): 4204-4214, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35543370

ABSTRACT

Suitable designed photoswitches based on azobenzenes are essential structural features for photopharmacological compounds. Optimized azobenzenes are important for serving as building blocks in "azo extension" strategies, and for designing photodrugs with tailored properties. Herein we present the synthesis and characterization of a variety of asymmetric azobenzenes by addressing selected structural features of the diazene core, such as polarity, steric demand, and electronic properties. Systematic exploration led to photoswitches with a relaxation half-life of seconds, minutes, hours, or days. Furthermore, the influence of different substitution patterns on the photophysical properties was charted. For analysis of all switches, robust characterization as well as examination under near-to physiological conditions was established, in order to assist with photoswitch choice for specific biological applications.


Subject(s)
Azo Compounds , Azo Compounds/chemistry
16.
Chemistry ; 28(20): e202104417, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35199896

ABSTRACT

A total synthesis of the cyclic lipodepsipeptide natural product orfamide A was achieved. By developing a synthesis format using an aminoacid ester building block and SPPS protocol adaptation, a focused library of target compounds was obtained, in high yield and purity. Spectral and LC-HRMS data of all library members with the isolated natural product identified the 5 Leu residue to be d- and the 3'-OH group to be R-configured. The structural correction of orfamide A by chemical synthesis and analysis was confirmed by biological activity comparison in Chlamydomonas reinhardtii, which indicated compound configuration to be important for bioactivity. Acute toxicity was also found against Trypanosoma brucei, the parasite causing African sleeping sickness.


Subject(s)
Biological Products , Trypanosoma brucei brucei , Trypanosomiasis, African , Animals , Lipopeptides , Peptides, Cyclic/chemistry
17.
Bioorg Med Chem ; 46: 116355, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34391122

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia. It is associated with the impairment of memory and other cognitive functions that are mainly caused by progressive defects in cholinergic and glutamatergic signaling in the central nervous system. Inhibitors of acetylcholinesterase (AChE) and ionotropic glutamate receptors of the N-methyl-d-aspartate (NMDA) receptor family are currently approved as AD therapeutics. We previously showed using a cell-based assay of NMDA receptor-mediated glutamate-induced excitotoxicity that bis-γ-carbolinium conjugates are useful NMDA receptor blockers. However, these compounds also act as subnanomolar AChE inhibitors, which may cause serious anticholinergic side effects when applied in vivo. Here, we evaluated new structures containing γ-carbolines linked to phenothiazine via a propionyl spacer. These compounds were superior to the previously characterized bis-γ-carbolinium conjugates because they blocked NMDA receptors without requiring a quaternary pyridine N-atom and inhibited AChE with moderate IC50 values of 0.54-5.3 µM. In addition, these new compounds displayed considerable selectivity for the inhibition of butyrylcholinesterase (BChE; IC50 = 0.008-0.041 µM), which may be favorable for AD treatment. Inhibitory activities towards the NMDA receptors and AChE were in the same micromolar range, which may be beneficial for equal dosing against multiple targets in AD patients.


Subject(s)
Carbolines/pharmacology , Cholinesterase Inhibitors/pharmacology , Neuroprotective Agents/pharmacology , Phenothiazines/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Butyrylcholinesterase/metabolism , Carbolines/chemistry , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Phenothiazines/chemistry , Receptors, N-Methyl-D-Aspartate/metabolism , Structure-Activity Relationship
18.
Chemistry ; 27(45): 11633-11642, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34032329

ABSTRACT

The first total synthesis of the actin-stabilizing marine natural product geodiamolide H was achieved. Solid-phase based peptide assembly paired with scalable stereoselective syntheses of polyketide building blocks and an optimized esterification set the stage for investigating the key ring-closing metathesis. Geodiamolide H and synthetic analogues were characterized for their toxicity and for antiproliferative effects in cellulo, by characterising actin polymerization induction in vitro, and by docking on the F-actin target and property computation in silico, for a better understanding of structure-activity relationships (SAR). A non-natural analogue of geodiamolide H was discovered to be most potent in the series, suggesting significant potential for tool compound design.


Subject(s)
Biological Products , Depsipeptides , Actins , Depsipeptides/pharmacology , Humans , Stereoisomerism , Structure-Activity Relationship
19.
Angew Chem Int Ed Engl ; 60(19): 10670-10679, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33625794

ABSTRACT

Clostridia coordinate many important processes such as toxin production, infection, and survival by density-dependent communication (quorum sensing) using autoinducing peptides (AIPs). Although clostridial AIPs have been proposed to be (thio)lactone-containing peptides, their true structures remain elusive. Here, we report the genome-guided discovery of an AIP that controls endospore formation in Ruminiclostridium cellulolyticum. Through a combination of chemical synthesis and chemical complementation assays with a mutant strain, we reveal that the genuine chemical mediator is a homodetic cyclopeptide (cAIP). Kinetic analyses indicate that the mature cAIP is produced via a cryptic thiolactone intermediate that undergoes a rapid S→N acyl shift, in a manner similar to intramolecular native chemical ligation (NCL). Finally, by implementing a chemical probe in a targeted screen, we show that this novel enzyme-primed, intramolecular NCL is a widespread feature of clostridial AIP biosynthesis.


Subject(s)
Clostridium/chemistry , Peptide Hydrolases/metabolism , Peptides, Cyclic/biosynthesis , Kinetics , Peptide Hydrolases/chemistry , Peptides, Cyclic/chemistry
20.
Angew Chem Int Ed Engl ; 60(16): 8678-8682, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33449370

ABSTRACT

Actin is essential for key processes in all eukaryotic cells. Cellpermeable optojasps provide spatiotemporal control of the actin cytoskeleton, confining toxicity and potentially rendering F-actin druggable by photopharmacology. Here, we report cryo electron microscopy (cryo-EM) structures of both isomeric states of one optojasp bound to actin filaments. The high-resolution structures reveal for the first time the pronounced effects of photoswitching a functionalized azobenzene. By characterizing the optojasp binding site and identifying conformational changes within F-actin that depend on the optojasp isomeric state, we refine determinants for the design of functional F-actin photoswitches.


Subject(s)
Actin Cytoskeleton/chemistry , Actins/chemistry , Azo Compounds/chemistry , Cryoelectron Microscopy , Models, Molecular , Molecular Conformation , Photochemical Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...