Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 10(1): 220010, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36704258

ABSTRACT

We developed a reaction-transport model capable of tracing iron isotopes in marine sediments to quantify the influence of bioturbation on the isotopic signature of the benthic dissolved (DFe) flux. By fitting the model to published data from marine sediments, we calibrated effective overall fractionation factors for iron reduction (-1.3‰), oxidation (+0.4‰), iron-sulfide precipitation (+0.5‰) and dissolution (-0.5‰) and pyrite precipitation (-0.7‰) that agree with literature values. Results show that for bottom-water oxygen concentrations greater than 50 µM, higher bioturbation increased the benthic DFe flux and its δ 56Fe signature. By contrast, for oxygen concentrations less than 50 µM, higher bioturbation decreased the benthic DFe flux and its δ 56Fe signature. The expressed overall fractionation of the benthic DFe flux relative to the δ 56Fe of the iron oxides entering the sediment ranges from -1.67‰ to 0.0‰. On a global scale, the presence of bioturbation increases sedimentary DFe release from approximately 70 G mol DFe yr-1 to approximately 160 G mol DFe yr-1 and decreases the δ 56Fe signature of the DFe flux.

2.
Global Biogeochem Cycles ; 36(11): e2022GB007493, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36582664

ABSTRACT

Glacier meltwater supplies silicon (Si) and iron (Fe) sourced from weathered bedrock to downstream ecosystems. However, the extent to which these nutrients reach the ocean is regulated by the nature of the benthic cycling of dissolved Si and Fe within fjord systems, given the rapid deposition of reactive particulate fractions at fjord heads. Here, we examine the benthic cycling of the two nutrients at four Patagonian fjord heads through geochemical analyses of sediment pore waters, including Si and Fe isotopes (δ30Si and δ56Fe), and reaction-transport modeling for Si. A high diffusive flux of dissolved Fe from the fjord sediments (up to 0.02 mmol m-2 day-1) compared to open ocean sediments (typically <0.001 mmol m-2 day-1) is supported by both reductive and non-reductive dissolution of glacially-sourced reactive Fe phases, as reflected by the range of pore water δ56Fe (-2.7 to +0.8‰). In contrast, the diffusive flux of dissolved Si from the fjord sediments (0.02-0.05 mmol m-2 day-1) is relatively low (typical ocean values are >0.1 mmol m-2 day-1). High pore water δ30Si (up to +3.3‰) observed near the Fe(II)-Fe(III) redox boundary is likely associated with the removal of dissolved Si by Fe(III) mineral phases, which, together with high sedimentation rates, contribute to the low diffusive flux of Si at the sampled sites. Our results suggest that early diagenesis promotes the release of dissolved Fe, yet suppresses the release of dissolved Si at glaciated fjord heads, which has significant implications for understanding the downstream transport of these nutrients along fjord systems.

3.
Nat Commun ; 13(1): 7297, 2022 11 26.
Article in English | MEDLINE | ID: mdl-36435937

ABSTRACT

Quantifying the organic carbon (OC) sink in marine sediments is crucial for assessing how the marine carbon cycle regulates Earth's climate. However, burial efficiency (BE) - the commonly-used metric reporting the percentage of OC deposited on the seafloor that becomes buried (beyond an arbitrary and often unspecified reference depth) - is loosely defined, misleading, and inconsistent. Here, we use a global diagenetic model to highlight orders-of-magnitude differences in sediment ages at fixed sub-seafloor depths (and vice-versa), and vastly different BE's depending on sediment depth or age horizons used to calculate BE. We propose using transfer efficiencies (Teff's) for quantifying sediment OC burial: Teff is numerically equivalent to BE but requires precise specification of spatial or temporal references, and emphasizes that OC degradation continues beyond these horizons. Ultimately, quantifying OC burial with precise sediment-depth and sediment-age-resolved metrics will enable a more consistent and transferable assessment of OC fluxes through the Earth system.


Subject(s)
Carbon , Geologic Sediments , Carbon Cycle , Carbon Sequestration , Earth, Planet
4.
Front Microbiol ; 13: 910694, 2022.
Article in English | MEDLINE | ID: mdl-35875517

ABSTRACT

Marine sediments comprise one of the largest microbial habitats and organic carbon sinks on the planet. However, it is unclear how variations in sediment physicochemical properties impact microorganisms on a global scale. Here we investigate patterns in the distribution of microbial cells, organic carbon, and the amounts of power used by microorganisms in global sediments. Our results show that sediment on continental shelves and margins is predominantly anoxic and contains cells whose power utilization decreases with sediment depth and age. Sediment in abyssal zones contains microbes that use low amounts of power on a per cell basis, across large gradients in sediment depth and age. We find that trends in cell abundance, POC storage and degradation, and microbial power utilization are mainly structured by depositional setting and redox conditions, rather than sediment depth and age. We also reveal distinct trends in per-cell power regime across different depositional settings, from maxima of ∼10-16 W cell-1 in recently deposited shelf sediments to minima of <10-20 W cell-1 in deeper and ancient sediments. Overall, we demonstrate broad global-scale connections between the depositional setting and redox conditions of global sediment, and the amounts of organic carbon and activity of deep biosphere microorganisms.

5.
Ambio ; 51(2): 370-382, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34628602

ABSTRACT

Unprecedented and dramatic transformations are occurring in the Arctic in response to climate change, but academic, public, and political discourse has disproportionately focussed on the most visible and direct aspects of change, including sea ice melt, permafrost thaw, the fate of charismatic megafauna, and the expansion of fisheries. Such narratives disregard the importance of less visible and indirect processes and, in particular, miss the substantive contribution of the shelf seafloor in regulating nutrients and sequestering carbon. Here, we summarise the biogeochemical functioning of the Arctic shelf seafloor before considering how climate change and regional adjustments to human activities may alter its biogeochemical and ecological dynamics, including ecosystem function, carbon burial, or nutrient recycling. We highlight the importance of the Arctic benthic system in mitigating climatic and anthropogenic change and, with a focus on the Barents Sea, offer some observations and our perspectives on future management and policy.


Subject(s)
Ecosystem , Geologic Sediments , Arctic Regions , Climate Change , Ice Cover
6.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190359, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-32862804

ABSTRACT

The Barents Sea is experiencing long-term climate-driven changes, e.g. modification in oceanographic conditions and extensive sea ice loss, which can lead to large, yet unquantified disruptions to ecosystem functioning. This key region hosts a large fraction of Arctic primary productivity. However, processes governing benthic and pelagic coupling are not mechanistically understood, limiting our ability to predict the impacts of future perturbations. We combine field observations with a reaction-transport model approach to quantify organic matter (OM) processing and disentangle its drivers. Sedimentary OM reactivity patterns show no gradients relative to sea ice extent, being mostly driven by seafloor spatial heterogeneity. Burial of high reactivity, marine-derived OM is evident at sites influenced by Atlantic Water (AW), whereas low reactivity material is linked to terrestrial inputs on the central shelf. Degradation rates are mainly driven by aerobic respiration (40-75%), being greater at sites where highly reactive material is buried. Similarly, ammonium and phosphate fluxes are greater at those sites. The present-day AW-dominated shelf might represent the future scenario for the entire Barents Sea. Our results represent a baseline systematic understanding of seafloor geochemistry, allowing us to anticipate changes that could be imposed on the pan-Arctic in the future if climate-driven perturbations persist. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Subject(s)
Climate Change , Ecosystem , Aquatic Organisms/metabolism , Arctic Regions , Computer Simulation , Geologic Sediments/chemistry , Ice Cover , Models, Biological , Organic Chemicals/metabolism , Seawater/chemistry
7.
Nature ; 565(7737): 73-77, 2019 01.
Article in English | MEDLINE | ID: mdl-30602750

ABSTRACT

Ice sheets are currently ignored in global methane budgets1,2. Although ice sheets have been proposed to contain large reserves of methane that may contribute to a rise in atmospheric methane concentration if released during periods of rapid ice retreat3,4, no data exist on the current methane footprint of ice sheets. Here we find that subglacially produced methane is rapidly driven to the ice margin by the efficient drainage system of a subglacial catchment of the Greenland ice sheet. We report the continuous export of methane-supersaturated waters (CH4(aq)) from the ice-sheet bed during the melt season. Pulses of high CH4(aq) concentration coincide with supraglacially forced subglacial flushing events, confirming a subglacial source and highlighting the influence of melt on methane export. Sustained methane fluxes over the melt season are indicative of subglacial methane reserves that exceed methane export, with an estimated 6.3 tonnes (discharge-weighted mean; range from 2.4 to 11 tonnes) of CH4(aq) transported laterally from the ice-sheet bed. Stable-isotope analyses reveal a microbial origin for methane, probably from a mixture of inorganic and ancient organic carbon buried beneath the ice. We show that subglacial hydrology is crucial for controlling methane fluxes from the ice sheet, with efficient drainage limiting the extent of methane oxidation5 to about 17 per cent of methane exported. Atmospheric evasion is the main methane sink once runoff reaches the ice margin, with estimated diffusive fluxes (4.4 to 28 millimoles of CH4 per square metre per day) rivalling that of major world rivers6. Overall, our results indicate that ice sheets overlie extensive, biologically active methanogenic wetlands and that high rates of methane export to the atmosphere can occur via efficient subglacial drainage pathways. Our findings suggest that such environments have been previously underappreciated and should be considered in Earth's methane budget.

8.
FEMS Microbiol Ecol ; 92(3)2016 Mar.
Article in English | MEDLINE | ID: mdl-26832206

ABSTRACT

Advances in microbial ecology in the cryosphere continue to be driven by empirical approaches including field sampling and laboratory-based analyses. Although mathematical models are commonly used to investigate the physical dynamics of Polar and Alpine regions, they are rarely applied in microbial studies. Yet integrating modelling approaches with ongoing observational and laboratory-based work is ideally suited to Polar and Alpine microbial ecosystems given their harsh environmental and biogeochemical characteristics, simple trophic structures, distinct seasonality, often difficult accessibility, geographical expansiveness and susceptibility to accelerated climate changes. In this opinion paper, we explain how mathematical modelling ideally complements field and laboratory-based analyses. We thus argue that mathematical modelling is a powerful tool for the investigation of these extreme environments and that fully integrated, interdisciplinary model-data approaches could help the Polar and Alpine microbiology community address some of the great research challenges of the 21st century (e.g. assessing global significance and response to climate change). However, a better integration of field and laboratory work with model design and calibration/validation, as well as a stronger focus on quantitative information is required to advance models that can be used to make predictions and upscale processes and fluxes beyond what can be captured by observations alone.


Subject(s)
Models, Biological , Climate Change , Ecosystem , Environment , Soil Microbiology
9.
Proc Natl Acad Sci U S A ; 110(23): 9273-6, 2013 Jun 04.
Article in English | MEDLINE | ID: mdl-23690593

ABSTRACT

Predicting the impact of ongoing anthropogenic CO2 emissions on calcifying marine organisms is complex, owing to the synergy between direct changes (acidification) and indirect changes through climate change (e.g., warming, changes in ocean circulation, and deoxygenation). Laboratory experiments, particularly on longer-lived organisms, tend to be too short to reveal the potential of organisms to acclimatize, adapt, or evolve and usually do not incorporate multiple stressors. We studied two examples of rapid carbon release in the geological record, Eocene Thermal Maximum 2 (∼53.2 Ma) and the Paleocene Eocene Thermal Maximum (PETM, ∼55.5 Ma), the best analogs over the last 65 Ma for future ocean acidification related to high atmospheric CO2 levels. We use benthic foraminifers, which suffered severe extinction during the PETM, as a model group. Using synchrotron radiation X-ray tomographic microscopy, we reconstruct the calcification response of survivor species and find, contrary to expectations, that calcification significantly increased during the PETM. In contrast, there was no significant response to the smaller Eocene Thermal Maximum 2, which was associated with a minor change in diversity only. These observations suggest that there is a response threshold for extinction and calcification response, while highlighting the utility of the geological record in helping constrain the sensitivity of biotic response to environmental change.


Subject(s)
Adaptation, Biological/physiology , Atmosphere/analysis , Calcification, Physiologic/physiology , Carbon Dioxide/analysis , Climate Change , Foraminifera/chemistry , Calcium Carbonate/analysis , Foraminifera/physiology , History, Ancient , Oceans and Seas , Synchrotrons , Tomography, X-Ray
SELECTION OF CITATIONS
SEARCH DETAIL
...