Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
BMC Res Notes ; 6: 466, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24229425

ABSTRACT

BACKGROUND: Classical scrapie in sheep is a fatal neurodegenerative disease associated with the conversion PrPC to PrPSc. Much is known about genetic susceptibility, uptake and dissemination of PrPSc in the body, but many aspects of prion diseases are still unknown. Different proteomic techniques have been used during the last decade to investigate differences in protein profiles between affected animals and healthy controls. We have investigated the protein profiles in serum of sheep with scrapie and healthy controls by SELDI-TOF-MS and LC-MS/MS. Latent Variable methods such as Principal Component Analysis, Partial Least Squares-Discriminant Analysis and Target Projection methods were used to describe the MS data. RESULTS: The serum proteomic profiles showed variable differences between the groups both throughout the incubation period and at the clinical end stage of scrapie. At the end stage, the target projection model separated the two groups with a sensitivity of 97.8%, and serum amyloid A was identified as one of the protein peaks that differed significantly between the groups. CONCLUSIONS: At the clinical end stage of classical scrapie, ten SELDI peaks significantly discriminated the scrapie group from the healthy controls. During the non-clinical incubation period, individual SELDI peaks were differently expressed between the groups at different time points. Investigations of differences in -omic profiles can contribute to new insights into the underlying disease processes and pathways, and advance our understanding of prion diseases, but comparison and validation across laboratories is difficult and challenging.


Subject(s)
PrPSc Proteins/chemistry , Proteome/chemistry , Scrapie/blood , Serum Amyloid A Protein/chemistry , Amino Acid Sequence , Animals , Animals, Newborn , Chromatography, Liquid , Least-Squares Analysis , Molecular Sequence Data , Multivariate Analysis , PrPSc Proteins/blood , Principal Component Analysis , Proteome/metabolism , Proteomics , Serum Amyloid A Protein/metabolism , Sheep , Sheep, Domestic , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry
2.
J Proteome Res ; 9(7): 3608-20, 2010 Jul 02.
Article in English | MEDLINE | ID: mdl-20499859

ABSTRACT

Mass spectral profiles from cerebrospinal fluid (CSF) are used as input to a novel multivariate approach to select features responsible for the separation of patients with multiple sclerosis (MS) from control groups. Our targeted statistical approach makes it possible to systematically remove features in the spectral fingerprints masking the components expressing the disease pattern. The low molecular weight CSF proteome from 54 patients with MS and a range of other neurological diseases (OND), as well as neurological healthy controls (NHC), is analyzed in replicates using mass spectral profiling. Statistically validated partial least-squares discriminant analysis (PLS-DA) models are created as a first step to separate the groups. Using the group membership as a target, the most discriminatory projection in the multivariate space spanned by the spectral profiles is revealed. From the resulting target-projected component, the spectral regions most significantly contributing to group separation are identified using the nonparametric discriminating variable (DIVA) test together with the so-called selectivity ratio (SR) plot. Our approach is general and can be applied for other diseases and instrumental techniques as well.


Subject(s)
Biomarkers/cerebrospinal fluid , Diagnostic Techniques and Procedures , Multiple Sclerosis/diagnosis , Multivariate Analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Humans , Principal Component Analysis , Proteomics , Statistics, Nonparametric
3.
Anal Chem ; 81(7): 2581-90, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19228047

ABSTRACT

The discriminating variable (DIVA) test and the selectivity ratio (SR) plot are developed as quantitative tools for revealing the variables in spectral or chromatographic profiles discriminating best between two groups of samples. The SR plot is visually similar to a spectrum or a chromatogram, but with the most intense regions corresponding to the most discriminating variables. Thus, the variables with highest SR represent the variables most important for interpretation of differences between groups. Regions with variables that are positively or negatively correlated to each other are displayed as corresponding negative and positive regions in the SR plot. The nonparametric DIVA test is designed for connecting SR to discriminatory ability of a variable quantified as probability for correct classification. A mean probability for a certain SR range is calculated as the mean correct classification rate (MCCR) for all variables in the same SR interval. The MCCR is thus similar to a mean sensitivity in each SR interval. In addition to the ranking of all variables according to their discriminatory ability provided by the SR plot, the DIVA test connects a probability measure to each SR interval. Thus, the DIVA test makes it possible to objectively define thresholds corresponding to mean probability levels in the SR plot and provides a quantitative means to select discriminating variables. In order to validate the approach, samples of untreated cerebrospinal fluid (CSF) and samples spiked with a multicomponent peptide standard were analyzed by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. The differences in the multivariate spectral profiles of the two groups were revealed using partial least-squares discriminant analysis (PLS-DA) followed by target projection (TP). The most discriminating mass-to-charge (m/z) regions were revealed by calculating the ratio of explained to unexplained variance for each m/z number on the target-projected component and displaying this measure in SR plots with quantitative boundaries determined from the DIVA test. The results are compared to some established methods for variable selection.


Subject(s)
Biomarkers/analysis , Chromatography , Discriminant Analysis , Humans , Least-Squares Analysis , Mass Spectrometry , Metabolomics , Models, Chemical , Multivariate Analysis , Peptides/cerebrospinal fluid , Proteomics , Reference Standards , Sensitivity and Specificity
4.
Anal Chem ; 79(18): 7014-26, 2007 Sep 15.
Article in English | MEDLINE | ID: mdl-17711295

ABSTRACT

Mass spectral profiles are influenced by several factors that have no relation to compositional differences between samples: baseline effects, shifts in mass-to-charge ratio (m/z) (synchronization/alignment problem), structured noise (heteroscedasticity), and, differences in signal intensities (normalization problem). Different procedures for pretreatment of whole mass spectral profiles described by almost 50,000 m/z values are investigated in order to find optimal approaches with respect to revealing the information content in the data. In order to quantitatively assess the impact of different procedures for pretreatment of mass spectral profiles, we use factorial designs with the ratio between intergroup and intragroup (replicate) variance as response. We have examined the influence of smoothing, binning, alignment/synchronization, noise pattern, and normalization on data interpretation. Our analysis shows that the spectral profiles have to be corrected for heteroscedastic noise prior to normalization. An nth root transform, where n is a small, positive integer, is used to create a homoscedastic noise structure without destroying the linear correlation structures describing individual components when using whole mass spectral profiles. The choice of n is decided by a simple graphic procedure using replicate information. Log transform is shown to change the heteroscedastic noise structure from being dominant in high-intensity regions, to produce the largest noise in the low-intensity regions. In addition, log transform has a negative effect on the collinearity in the profiles. Factorial designs reveal strong interactions between several of the pretreatment steps, e.g., noise structure and normalization. This underlines the limited usability of looking at the different pretreatment steps in isolation. Binning turns out to be able to substitute smoothing of spectra by, for example, moving average or Savitsky-Golay, while, at the same time, reducing the data point description of the profiles by 1 order of magnitude. Thus, if the sampling density is high, binning seems to be an attractive option for data reduction without the risk of losing information accompanying the integration of profiles into peaks. In the absence of smoothing, binning should be executed prior to alignment. If binning is not performed, the order of pretreatment should be smoothing, alignment, nth root transform, and normalization.


Subject(s)
Cerebrospinal Fluid , Proteomics , Specimen Handling/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Humans , Models, Chemical
5.
Proteomics Clin Appl ; 1(7): 699-711, 2007 Jul.
Article in English | MEDLINE | ID: mdl-21136725

ABSTRACT

Cerebrospinal fluid (CSF) is a perfect source to search for new biomarkers to improve early diagnosis of neurological diseases. Standardization of pre-analytical handling of the sample is, however, important to obtain acceptable analytical quality. In the present study, MALDI-TOF MS was used to examine the influence of pre-analytical sample procedures on the low molecular weight (MW) CSF proteome. Different storage conditions like temperature and duration or the addition of as little as 0.2 µL blood/mL neat CSF caused significant changes in the mass spectra. The performance of different types of MW cut-off spin cartridges from different suppliers used to enrich the low MW CSF proteome showed great variance in cut-off accuracy, stability and reproducibility. The described analytical method achieved a polypeptide discriminating limit of approximately 800 pM, two to three orders of magnitude lower than reported for plasma. Based on this study, we recommend that CSF is centrifuged immediately after sampling, prior to storage at -80ºC without addition of protease inhibitors. Guanidinium hydrochloride is preferred to break protein-protein interactions. A spin cartridge with cut-off limit above the intended analytical mass range is recommended. Our study contributes to the important task of developing standardized pre-analytical protocols for the proteomic study of CSF.

6.
Environ Toxicol Pharmacol ; 18(2): 127-33, 2004 Nov.
Article in English | MEDLINE | ID: mdl-21782741

ABSTRACT

The present paper describes a strategy for toxicological evaluation of complex mixtures based on chemical "fingerprinting" followed by pattern recognition (multivariate data analysis). The purpose is to correlate chemical fingerprints to measured toxicological endpoints, identify all major contributors to toxicity, and predict toxicity of additional mixtures. The strategy is illustrated with organic extracts of exhaust particles which are characterized by full scan gas chromatography-mass spectrometry (GC-MS). The complex GC-MS data are resolved into peaks and spectra for individual compounds using an automated curve resolution procedure. Projections to latent structures (PLS) is used for the regression modeling to correlate the GC-MS data to the measured responses; mutagenicity in the Ames Salmonella assay. The regression model identifies those peaks that co-vary with the observed mutagenicity. These peaks may be identified chemically from their spectra. Furthermore, the regression model can be used to predict mutagenicity from GC-MS chromatograms of additional samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...