Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
2.
Commun Biol ; 7(1): 570, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750146

ABSTRACT

Gastrointestinal (GI) disruptions and inflammatory bowel disease (IBD) are commonly associated with Parkinson's disease (PD), but how they may impact risk for PD remains poorly understood. Herein, we provide evidence that prodromal intestinal inflammation expedites and exacerbates PD endophenotypes in rodent carriers of the human PD risk allele LRRK2 G2019S in a sex-dependent manner. Chronic intestinal damage in genetically predisposed male mice promotes α-synuclein aggregation in the substantia nigra, loss of dopaminergic neurons and motor impairment. This male bias is preserved in gonadectomized males, and similarly conferred by sex chromosomal complement in gonadal females expressing human LRRK2 G2019S. The early onset and heightened severity of neuropathological and behavioral outcomes in male LRRK2 G2019S mice is preceded by increases in α-synuclein in the colon, α-synuclein-positive macrophages in the colonic lamina propria, and loads of phosphorylated α-synuclein within microglia in the substantia nigra. Taken together, these data reveal that prodromal intestinal inflammation promotes the pathogenesis of PD endophenotypes in male carriers of LRRK2 G2019S, through mechanisms that depend on genotypic sex and involve early accumulation of α-synuclein in myeloid cells within the gut.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , Animals , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Mice , Male , Female , Endophenotypes , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Prodromal Symptoms , Disease Models, Animal , Mice, Transgenic , Humans , Sex Factors , Inflammation/metabolism , Inflammation/genetics , Mice, Inbred C57BL , Sex Characteristics
3.
Sci Transl Med ; 16(737): eabm2090, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38446901

ABSTRACT

Diabetic kidney disease (DKD) is the main cause of chronic kidney disease (CKD) and progresses faster in males than in females. We identify sex-based differences in kidney metabolism and in the blood metabolome of male and female individuals with diabetes. Primary human proximal tubular epithelial cells (PTECs) from healthy males displayed increased mitochondrial respiration, oxidative stress, apoptosis, and greater injury when exposed to high glucose compared with PTECs from healthy females. Male human PTECs showed increased glucose and glutamine fluxes to the TCA cycle, whereas female human PTECs showed increased pyruvate content. The male human PTEC phenotype was enhanced by dihydrotestosterone and mediated by the transcription factor HNF4A and histone demethylase KDM6A. In mice where sex chromosomes either matched or did not match gonadal sex, male gonadal sex contributed to the kidney metabolism differences between males and females. A blood metabolomics analysis in a cohort of adolescents with or without diabetes showed increased TCA cycle metabolites in males. In a second cohort of adults with diabetes, females without DKD had higher serum pyruvate concentrations than did males with or without DKD. Serum pyruvate concentrations positively correlated with the estimated glomerular filtration rate, a measure of kidney function, and negatively correlated with all-cause mortality in this cohort. In a third cohort of adults with CKD, male sex and diabetes were associated with increased plasma TCA cycle metabolites, which correlated with all-cause mortality. These findings suggest that differences in male and female kidney metabolism may contribute to sex-dependent outcomes in DKD.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Renal Insufficiency, Chronic , Adolescent , Adult , Humans , Female , Male , Animals , Mice , Sex Characteristics , Pyruvates , Glucose , Kidney
4.
Nat Cardiovasc Res ; 2(4): 340-350, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37808586

ABSTRACT

Many human diseases, including cardiovascular disease, show differences between men and women in pathology and treatment outcomes. In the case of cardiac disease, sex differences are exemplified by differences in the frequency of specific types of congenital and adult-onset heart disease. Clinical studies have suggested that gonadal hormones are a factor in sex bias. However, recent research has shown that gene and protein networks under non-hormonal control also account for cardiac sex differences. In this review, we describe the sex chromosome pathways that lead to sex differences in the development and function of the heart and highlight how these findings affect future care and treatment of cardiac disease.

5.
J Womens Health (Larchmt) ; 32(8): 891-896, 2023 08.
Article in English | MEDLINE | ID: mdl-37585516

ABSTRACT

To improve research on women's health, and to achieve better understanding of the factors controlling disease across diverse populations of humans, it is imperative to study sex differences in physiology and disease. After the introduction of the "SABV policy" at NIH, which requires investigators using animals or humans to consider sex as a biological factor, it became clear that many investigators were unaware of concepts of sexual differentiation or methods that can be used to study sex as a biological variable (SABV). To remedy this situation, efforts have increased to teach concepts and methods of SABV at all educational levels. The UCLA Scientific Center of Research Excellence (SCORE) grant "Sex differences in the metabolic syndrome" promotes education about SABV through three primary mechanisms: (1) through didactic course content for students at the undergraduate level, (2) by providing pilot funding for early career investigators to study the role of sex in metabolism-related areas, and (3) through curation of a video library, which may be useful for investigators performing research at the graduate, postgraduate, and faculty levels.


Subject(s)
Biomedical Research , Animals , Humans , Male , Female , Sex Factors , Sex Characteristics , Women's Health , Coitus
6.
Nat Immunol ; 24(5): 780-791, 2023 05.
Article in English | MEDLINE | ID: mdl-36928413

ABSTRACT

Viral infection outcomes are sex biased, with males generally more susceptible than females. Paradoxically, the numbers of antiviral natural killer (NK) cells are increased in males. We demonstrate that while numbers of NK cells are increased in male mice, they display decreased effector function compared to females in mice and humans. These differences were not solely dependent on gonadal hormones, because they persisted in gonadectomized mice. Kdm6a (which encodes the protein UTX), an epigenetic regulator that escapes X inactivation, was lower in male NK cells, while NK cell-intrinsic UTX deficiency in female mice increased NK cell numbers and reduced effector responses. Furthermore, mice with NK cell-intrinsic UTX deficiency showed increased lethality to mouse cytomegalovirus. Integrative multi-omics analysis revealed a critical role for UTX in regulating chromatin accessibility and gene expression critical for NK cell homeostasis and effector function. Collectively, these data implicate UTX as a critical molecular determinant of sex differences in NK cells.


Subject(s)
Genes, X-Linked , Sex Characteristics , Male , Humans , Female , Mice , Animals , Epigenesis, Genetic , Killer Cells, Natural , Histone Demethylases/genetics
7.
bioRxiv ; 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36798326

ABSTRACT

Background: We have generated a rat model similar to the Four Core Genotypes mouse model, allowing comparison of XX and XY rats with the same type of gonad. The model detects novel sex chromosome effects (XX vs. XY) that contribute to sex differences in any rat phenotype. Methods: XY rats were produced with an autosomal transgene of Sry , the testis-determining factor gene, which were fathers of XX and XY progeny with testes. In other rats, CRISPR-Cas9 technology was used to remove Y chromosome factors that initiate testis differentiation, producing fertile XY gonadal females that have XX and XY progeny with ovaries. These groups can be compared to detect sex differences caused by sex chromosome complement (XX vs. XY) and/or by gonadal hormones (rats with testes vs. ovaries). Results: We have measured numerous phenotypes to characterize this model, including gonadal histology, breeding performance, anogenital distance, levels of reproductive hormones, body and organ weights, and central nervous system sexual dimorphisms. Serum testosterone levels were comparable in adult XX and XY gonadal males. Numerous phenotypes previously found to be sexually differentiated by the action of gonadal hormones were found to be similar in XX and XY rats with the same type of gonad, suggesting that XX and XY rats with the same type of gonad have comparable levels of gonadal hormones at various stages of development. Conclusion: The results establish a powerful new model to discriminate sex chromosome and gonadal hormone effects that cause sexual differences in rat physiology and disease.

8.
J Neurosci ; 43(8): 1321-1333, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36631267

ABSTRACT

All eutherian mammals show chromosomal sex determination with contrasting sex chromosome dosages (SCDs) between males (XY) and females (XX). Studies in transgenic mice and humans with sex chromosome trisomy (SCT) have revealed direct SCD effects on regional mammalian brain anatomy, but we lack a formal test for cross-species conservation of these effects. Here, we develop a harmonized framework for comparative structural neuroimaging and apply this to systematically profile SCD effects on regional brain anatomy in both humans and mice by contrasting groups with SCT (XXY and XYY) versus XY controls. Total brain size was substantially altered by SCT in humans (significantly decreased by XXY and increased by XYY), but not in mice. Robust and spatially convergent effects of XXY and XYY on regional brain volume were observed in humans, but not mice, when controlling for global volume differences. However, mice do show subtle effects of XXY and XYY on regional volume, although there is not a general spatial convergence in these effects within mice or between species. Notwithstanding this general lack of conservation in SCT effects, we detect several brain regions that show overlapping effects of XXY and XYY both within and between species (cerebellar, parietal, and orbitofrontal cortex), thereby nominating high priority targets for future translational dissection of SCD effects on the mammalian brain. Our study introduces a generalizable framework for comparative neuroimaging in humans and mice and applies this to achieve a cross-species comparison of SCD effects on the mammalian brain through the lens of SCT.SIGNIFICANCE STATEMENT Sex chromosome dosage (SCD) affects neuroanatomy and risk for psychopathology in humans. Performing mechanistic studies in the human brain is challenging but possible in mouse models. Here, we develop a framework for cross-species neuroimaging analysis and use this to show that an added X- or Y-chromosome significantly alters human brain anatomy but has muted effects in the mouse brain. However, we do find evidence for conserved cross-species impact of an added chromosome in the fronto-parietal cortices and cerebellum, which point to regions for future mechanistic dissection of sex chromosome dosage effects on brain development.


Subject(s)
Brain , Sex Chromosomes , Male , Female , Humans , Mice , Animals , Brain/anatomy & histology , Neuroimaging , Cerebellum , Mice, Transgenic , Mammals
9.
Transl Stroke Res ; 14(5): 776-789, 2023 10.
Article in English | MEDLINE | ID: mdl-35906327

ABSTRACT

Post-menopausal women become vulnerable to stroke and have poorer outcomes and higher mortality than age-matched men, and previous studies suggested that sex chromosomes play a vital role in mediating stroke sensitivity in the aged. It is unknown if this is due to effects of the X or Y chromosome. The present study used the XY* mouse model (with four genotypes: XX and XO gonadal females and XY and XXY gonadal males) to compare the effect of the X vs. Y chromosome compliment in stroke. Aged (18-20 months) and gonadectomized young (8-12 weeks) mice were subjected to a 60-min middle cerebral artery occlusion. Infarct volume and behavioral deficits were quantified 3 days after stroke. Microglial activation and infiltration of peripheral leukocytes in the aged ischemic brain were assessed by flow cytometry. Plasma inflammatory cytokine levels by ELISA, and brain expression of two X chromosome-linked genes, KDM6A and KDM5C by immunochemistry, were also examined. Both aged and young XX and XXY mice had worse stroke outcomes compared to XO and XY mice, respectively; however, the difference between XX vs. XXY and XO vs. XY aged mice was minimal. Mice with two copies of the X chromosome showed more robust microglial activation, higher brain-infiltrating leukocytes, elevated plasma cytokine levels, and enhanced co-localization of KDM6A and KDM5C with Iba1+ cells after stroke than mice with one X chromosome. The number of X chromosomes mediates stroke sensitivity in aged mice, which might be processed through the X chromosome-linked genes and the inflammatory responses.


Subject(s)
Stroke , X Chromosome , Male , Mice , Female , Animals , X Chromosome/genetics , Y Chromosome/genetics , Stroke/genetics , Genotype , Cytokines/genetics
10.
Addict Biol ; 27(5): e13222, 2022 09.
Article in English | MEDLINE | ID: mdl-36001422

ABSTRACT

Alcohol use and high-risk alcohol drinking behaviours among women are rapidly rising. In rodent models, females typically consume more ethanol (EtOH) than males. Here, we used the four core genotypes (FCG) mouse model to investigate the influence of gonadal hormones and sex chromosome complement on EtOH drinking behaviours. FCG mice were given access to escalating concentrations of EtOH in a two-bottle, 24-h continuous access drinking paradigm to assess consumption and preference. Relapse-like behaviour was measured by assessing escalated intake following repeated cycles of deprivation and re-exposure. Twenty-four-hour EtOH consumption was greater in mice with ovaries (Sry-), relative to those with testes, and in mice with the XX chromosome complement, relative to those with XY sex chromosomes. EtOH preference was higher in XX versus XY mice. For both consumption and preference, the influences of the Sry gene and sex chromosomes were concentration dependent. Escalated intake following repeated cycles of deprivation and re-exposure emerged only in XX mice (vs. XY). Mice with ovaries (Sry- FCG mice and C57BL/6J females) were also found to consume more water than mice with testes. These results demonstrate that aspects of EtOH drinking behaviour may be independently regulated by sex hormones and chromosomes and inform our understanding of the neurobiological mechanisms which contribute to EtOH dependence in male and female mice. Future investigation of the contribution of sex chromosomes to EtOH drinking behaviours is warranted. We used the FCG mouse model to investigate the influence of gonadal hormones and sex chromosome complement on EtOH drinking behaviours, including the alcohol deprivation effect. Escalated intake following repeated cycles of deprivation and re-exposure emerged only in XX mice (vs. XY). These results demonstrate that aspects of EtOH drinking behaviour may be independently regulated by sex hormones and chromosomes.


Subject(s)
Ethanol , Sex Chromosomes , Alcohol Drinking/genetics , Animals , Ethanol/pharmacology , Female , Genotype , Gonadal Hormones , Gonadal Steroid Hormones , Humans , Male , Mice , Mice, Inbred C57BL , Recurrence
11.
Nat Rev Endocrinol ; 18(9): 574-583, 2022 09.
Article in English | MEDLINE | ID: mdl-35705742

ABSTRACT

Understanding sex differences in physiology and disease requires the identification of the molecular agents that cause phenotypic sex differences. Two groups of such agents are genes located on the sex chromosomes, and gonadal hormones. The former have coherent linkage to chromosomes that form differently in the two sexes under the influence of genomic forces that are not related to reproductive function, whereas the latter have a direct or indirect relationship to reproduction. Evidence published in the past 5 years supports the identification of several agents of sexual differentiation encoded by the X chromosome in mice, including Kdm5c, Kdm6a, Ogt and Xist. These X chromosome agents have wide pleiotropic effects, potentially influencing sex differences in many different tissues, a characteristic shared with the gonadal hormones. The identification of X chromosome agents of sexual differentiation will facilitate understanding of complex intersecting gene pathways underlying sex differences in disease.


Subject(s)
Sex Differentiation , X Chromosome , Animals , Female , Gonadal Hormones/metabolism , Humans , Male , Mice , Sex Characteristics , Sex Chromosomes/genetics , Sex Chromosomes/metabolism , Sex Differentiation/genetics , X Chromosome/metabolism
12.
Article in English | MEDLINE | ID: mdl-35667790

ABSTRACT

Major sex differences in mammalian tissues are functionally tied to reproduction and evolved as adaptations to meet different reproductive needs of females and males. They were thus directly controlled by gonadal hormones. Factors encoded on the sex chromosomes also cause many sex differences in diverse tissues because they are present in different doses in XX and XY cells. The sex chromosome effects likely evolved not because of demands of reproduction, but as side effects of genomic forces that adaptively reduced sexual inequality. Sex-specific effects of particular factors, including gonadal hormones, therefore, are not necessarily explained as adaptations for reproduction, but also as potential factors offsetting, rather than producing, sex differences. The incorporation of these concepts would improve future teaching about sexual differentiation.

13.
Am J Respir Crit Care Med ; 206(2): 186-196, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35504005

ABSTRACT

Rationale: Idiopathic pulmonary arterial hypertension (PAH) is a terminal pulmonary vascular disease characterized by increased pressure, right ventricular failure, and death. PAH exhibits a striking sex bias and is up to four times more prevalent in females. Understanding the molecular basis behind sex differences could help uncover novel therapies. Objectives: We previously discovered that the Y chromosome is protective against hypoxia-induced experimental pulmonary hypertension (PH), which may contribute to sex differences in PAH. Here, we identify the gene responsible for Y-chromosome protection, investigate key downstream autosomal genes, and demonstrate a novel preclinical therapy. Methods: To test the effect of Y-chromosome genes on PH development, we knocked down each Y-chromosome gene expressed in the lung by means of intratracheal instillation of siRNA in gonadectomized male mice exposed to hypoxia and monitored changes in right ventricular and pulmonary artery hemodynamics. We compared the lung transcriptome of Uty knockdown mouse lungs to those of male and female PAH patient lungs to identify common downstream pathogenic chemokines and tested the effects of these chemokines on human pulmonary artery endothelial cells. We further inhibited the activity of these chemokines in two preclinical pulmonary hypertension models to test the therapeutic efficacy. Measurements and Main Results: Knockdown of the Y-chromosome gene Uty resulted in more severe PH measured by increased right ventricular pressure and decreased pulmonary artery acceleration time. RNA sequencing revealed an increase in proinflammatory chemokines Cxcl9 and Cxcl10 as a result of Uty knockdown. We found CXCL9 and CXCL10 significantly upregulated in human PAH lungs, with more robust upregulation in females with PAH. Treatment of human pulmonary artery endothelial cells with CXCL9 and CXCL10 triggered apoptosis. Inhibition of Cxcl9 and Cxcl10 expression in male Uty knockout mice and CXCL9 and CXCL10 activity in female rats significantly reduced PH severity. Conclusions:Uty is protective against PH. Reduction of Uty expression results in increased expression of proinflammatory chemokines Cxcl9 and Cxcl10, which trigger endothelial cell death and PH. Inhibition of CLXC9 and CXLC10 rescues PH development in multiple experimental models.


Subject(s)
Chemokines , Hypertension, Pulmonary , Minor Histocompatibility Antigens , Nuclear Proteins , Animals , Chemokines/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Familial Primary Pulmonary Hypertension/genetics , Female , Genes, Y-Linked , Humans , Hypertension, Pulmonary/genetics , Hypoxia , Male , Mice , Minor Histocompatibility Antigens/genetics , Nuclear Proteins/genetics , Pulmonary Artery , Rats
14.
Genome Res ; 32(5): 807-824, 2022 05.
Article in English | MEDLINE | ID: mdl-35396276

ABSTRACT

Sex differences in physiology and disease in mammals result from the effects of three classes of factors that are inherently unequal in males and females: reversible (activational) effects of gonadal hormones, permanent (organizational) effects of gonadal hormones, and cell-autonomous effects of sex chromosomes, as well as genes driven by these classes of factors. Often, these factors act together to cause sex differences in specific phenotypes, but the relative contribution of each and the interactions among them remain unclear. Here, we used the four core genotypes (FCG) mouse model with or without hormone replacement to distinguish the effects of each class of sex-biasing factors on transcriptome regulation in liver and adipose tissues. We found that the activational hormone levels have the strongest influence on gene expression, followed by the organizational gonadal sex effect, and last, sex chromosomal effect, along with interactions among the three factors. Tissue specificity was prominent, with a major impact of estradiol on adipose tissue gene regulation and of testosterone on the liver transcriptome. The networks affected by the three sex-biasing factors include development, immunity and metabolism, and tissue-specific regulators were identified for these networks. Furthermore, the genes affected by individual sex-biasing factors and interactions among factors are associated with human disease traits such as coronary artery disease, diabetes, and inflammatory bowel disease. Our study offers a tissue-specific account of the individual and interactive contributions of major sex-biasing factors to gene regulation that have broad impact on systemic metabolic, endocrine, and immune functions.


Subject(s)
Sex Characteristics , Sex Chromosomes , Animals , Female , Gonadal Hormones/metabolism , Gonadal Hormones/pharmacology , Gonadal Steroid Hormones/metabolism , Gonads/metabolism , Male , Mammals/genetics , Mice , Sex Chromosomes/genetics
15.
J Neurosci Res ; 100(1): 183-190, 2022 01.
Article in English | MEDLINE | ID: mdl-32731302

ABSTRACT

Kappa opioid receptor (KOR) agonists produce robust analgesia with minimal abuse liability and are considered promising pharmacological agents to manage chronic pain and itch. The KOR system is also notable for robust differences between the sexes, with females exhibiting lower analgesic response than males. Sexually dimorphic traits can be due to either the influence of gonadal hormones during development or adulthood, or due to the complement of genes expressed on the X or Y chromosome. Previous studies examining sex differences in KOR antinociception have relied on surgical or pharmacological manipulation of the gonads to determine whether sex hormones influence KOR function. While there are conflicting reports whether gonadal hormones influence KOR function, no study has examined these effects in context with sex chromosomes. Here, we use two genetic mouse models, the four core genotypes and XY*, to isolate the chromosomal and hormonal contributions to sex differences in KOR analgesia. Mice were treated with systemic KOR agonist (U50,488H) and thermal analgesia measured in the tail withdrawal assay. We found that KOR antinociception was influenced predominantly by the number of the X chromosomes. These data suggest that the dose and/or parental imprint on X gene(s) contribute significantly to the sexually dimorphism in KOR analgesia.


Subject(s)
Analgesia , Receptors, Opioid, kappa , Analgesics, Opioid/pharmacology , Animals , Female , Male , Mice , Receptors, Opioid, kappa/agonists , Receptors, Opioid, kappa/genetics , Sex Characteristics , X Chromosome
16.
Dev Cell ; 56(21): 3019-3034.e7, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34655525

ABSTRACT

Sex disparities in cardiac homeostasis and heart disease are well documented, with differences attributed to actions of sex hormones. However, studies have indicated sex chromosomes act outside of the gonads to function without mediation by gonadal hormones. Here, we performed transcriptional and proteomics profiling to define differences between male and female mouse hearts. We demonstrate, contrary to current dogma, cardiac sex disparities are controlled not only by sex hormones but also through a sex-chromosome mechanism. Using Turner syndrome (XO) and Klinefelter (XXY) models, we find the sex-chromosome pathway is established by X-linked gene dosage. We demonstrate cardiac sex disparities occur at the earliest stages of heart formation, a period before gonad formation. Using these datasets, we identify and define a role for alpha-1B-glycoprotein (A1BG), showing loss of A1BG leads to cardiac defects in females, but not males. These studies provide resources for studying sex-biased cardiac disease states.


Subject(s)
Gonads/growth & development , Gonads/metabolism , Proteomics , Sex Characteristics , Sex Chromosomes/metabolism , Animals , Female , Genes, X-Linked/genetics , Male , Mice , Proteomics/methods
17.
JCI Insight ; 6(13)2021 07 08.
Article in English | MEDLINE | ID: mdl-34061778

ABSTRACT

The main mechanisms underlying sexually dimorphic outcomes in neonatal lung injury are unknown. We tested the hypothesis that hormone- or sex chromosome-mediated mechanisms interact with hyperoxia exposure to impact injury and repair in the neonatal lung. To distinguish sex differences caused by gonadal hormones versus sex chromosome complement (XX versus XY), we used the Four Core Genotypes (FCG) mice and exposed them to hyperoxia (95% FiO2, P1-P4: saccular stage) or room air. This model generates XX and XY mice that each have either testes (with Sry, XXM, or XYM) or ovaries (without Sry, XXF, or XYF). Lung alveolarization and vascular development were more severely impacted in XYM and XYF compared with XXF and XXM mice. Cell cycle-related pathways were enriched in the gonadal or chromosomal females, while muscle-related pathways were enriched in the gonadal males, and immune-response-related pathways were enriched in chromosomal males. Female gene signatures showed a negative correlation with human patients who developed bronchopulmonary dysplasia (BPD) or needed oxygen therapy at 28 days. These results demonstrate that chromosomal sex - and not gonadal sex - impacted the response to neonatal hyperoxia exposure. The female sex chromosomal complement was protective and could mediate sex-specific differences in the neonatal lung injury.


Subject(s)
Bronchopulmonary Dysplasia , Gonadal Hormones/metabolism , Hyperoxia , Lung Injury , Oxygen Inhalation Therapy , Sex Chromosomes , Animals , Animals, Newborn , Bronchopulmonary Dysplasia/genetics , Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/therapy , Female , Humans , Hyperoxia/etiology , Hyperoxia/genetics , Hyperoxia/metabolism , Infant, Newborn , Lung Injury/etiology , Lung Injury/genetics , Lung Injury/metabolism , Male , Mice , Ovary/metabolism , Oxygen Inhalation Therapy/adverse effects , Oxygen Inhalation Therapy/methods , Protective Factors , Risk Factors , Sex Characteristics , Testis/metabolism
18.
Front Endocrinol (Lausanne) ; 12: 582614, 2021.
Article in English | MEDLINE | ID: mdl-34122327

ABSTRACT

We have used the four core genotypes (FCG) mouse model, which allows a distinction between effects of gonadal secretions and chromosomal complement, to determine when sex differences in the immune system first appear and what influences their development. Using splenic T cell number as a measure that could be applied to neonates with as yet immature immune responses, we found no differences among the four genotypes at postnatal day 1, but by day 7, clear sex differences were observed. These sex differences were unexpectedly independent of chromosomal complement and similar in degree to gonadectomized FCG adults: both neonatal and gonadectomized adult females (XX and XY) showed 2-fold the number of CD4+ and 7-fold the number of CD8+ T cells versus their male (XX and XY) counterparts. Appearance of this long-lived sex difference between days 1 and 7 suggested a role for the male-specific perinatal surge of testicular testosterone. Interference with the testosterone surge significantly de-masculinized the male CD4+, but not CD8+ splenic profile. Treatment of neonates demonstrated elevated testosterone limited mature cell egress from the thymus, whereas estradiol reduced splenic T cell seeding in females. Neonatal male splenic epithelium/stroma expressed aromatase mRNA, suggesting capacity for splenic conversion of perinatal testosterone into estradiol in males, which, similar to administration of estradiol in females, would result in reduced splenic T cell seeding. These sex steroid effects affected both CD4+ and CD8+ cells and yet interference with the testosterone surge only significantly de-masculinized the splenic content of CD4+ cells. For CD8+ cells, male cells in the thymus were also found to express one third the density of sphingosine-1-phosphate thymic egress receptors per cell compared to female, a male characteristic most likely an indirect result of Sry expression. Interestingly, the data also support a previously unrecognized role for non-gonadal estradiol in the promotion of intra-thymic cell proliferation in neonates of both sexes. Microarray analysis suggested the thymic epithelium/stroma as the source of this hormone. We conclude that some immune sex differences appear long before puberty and more than one mechanism contributes to differential numbers and distribution of T cells.


Subject(s)
Disorders of Sex Development/immunology , Immune System Phenomena/genetics , Immune System/physiology , Animals , Animals, Newborn , CD4-Positive T-Lymphocytes/physiology , CD8-Positive T-Lymphocytes/physiology , Cell Differentiation/genetics , Cell Differentiation/immunology , Disease Models, Animal , Disorders of Sex Development/genetics , Disorders of Sex Development/pathology , Female , Genetic Association Studies , Genotype , Male , Mice , Mice, Inbred C57BL , Pregnancy , Sex Characteristics , Sex-Determining Region Y Protein/genetics , Sexual Maturation/genetics , Sexual Maturation/immunology
19.
Endocr Rev ; 42(3): 219-258, 2021 05 25.
Article in English | MEDLINE | ID: mdl-33704446

ABSTRACT

In May 2014, the National Institutes of Health (NIH) stated its intent to "require applicants to consider sex as a biological variable (SABV) in the design and analysis of NIH-funded research involving animals and cells." Since then, proposed research plans that include animals routinely state that both sexes/genders will be used; however, in many instances, researchers and reviewers are at a loss about the issue of sex differences. Moreover, the terms sex and gender are used interchangeably by many researchers, further complicating the issue. In addition, the sex or gender of the researcher might influence study outcomes, especially those concerning behavioral studies, in both animals and humans. The act of observation may change the outcome (the "observer effect") and any experimental manipulation, no matter how well-controlled, is subject to it. This is nowhere more applicable than in physiology and behavior. The sex of established cultured cell lines is another issue, in addition to aneuploidy; chromosomal numbers can change as cells are passaged. Additionally, culture medium contains steroids, growth hormone, and insulin that might influence expression of various genes. These issues often are not taken into account, determined, or even considered. Issues pertaining to the "sex" of cultured cells are beyond the scope of this Statement. However, we will discuss the factors that influence sex and gender in both basic research (that using animal models) and clinical research (that involving human subjects), as well as in some areas of science where sex differences are routinely studied. Sex differences in baseline physiology and associated mechanisms form the foundation for understanding sex differences in diseases pathology, treatments, and outcomes. The purpose of this Statement is to highlight lessons learned, caveats, and what to consider when evaluating data pertaining to sex differences, using 3 areas of research as examples; it is not intended to serve as a guideline for research design.


Subject(s)
Biomedical Research , Animals , Female , Humans , Male , National Institutes of Health (U.S.) , Sex Characteristics , Sex Factors , United States
20.
J Neuroinflammation ; 18(1): 70, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33712031

ABSTRACT

BACKGROUND: Stroke is a sexually dimorphic disease. Previous studies have found that young females are protected against ischemia compared to males, partially due to the protective effect of ovarian hormones, particularly estrogen (E2). However, there are also genetic and epigenetic effects of X chromosome dosage that contribute to stroke sensitivity and neuroinflammation after injury, especially in the aged. Genes that escape from X chromosome inactivation (XCI) contribute to sex-specific phenotypes in many disorders. Kdm5c and kdm6a are X escapee genes that demethylate H3K4me3 and H3K27me3, respectively. We hypothesized that the two demethylases play critical roles in mediating the stroke sensitivity. METHODS: To identify the X escapee genes involved in stroke, we performed RNA-seq in flow-sorted microglia from aged male and female wild type (WT) mice subjected to middle cerebral artery occlusion (MCAO). The expression of these genes (kdm5c/kdm6a) were confirmed in four core genotypes (FCG) mice and in post-mortem human stroke brains by immunohistochemistry (IHC), Western blot, and RT-PCR. Chromatin immunoprecipitation (ChIP) assays were conducted to detect DNA levels of inflammatory interferon regulatory factor (IRF) 4/5 precipitated by histone H3K4 and H3K27 antibodies. Manipulation of kdm5c/kdm6a expression with siRNA or lentivirus was performed in microglial culture, to determine downstream pathways and examine the regulatory roles in inflammatory cytokine production. RESULTS: Kdm5c and kdm6a mRNA levels were significantly higher in aged WT female vs. male microglia, and the sex difference also existed in ischemic brains from FCG mice and human stroke patients. The ChIP assay showed the IRF 4/5 had higher binding levels to demethylated H3K4 or H3K27, respectively, in female vs. male ischemic microglia. Knockdown or over expression of kdm5c/kdm6a with siRNA or lentivirus altered the methylation of H3K4 or H3K27 at the IRF4/5 genes, which in turn, impacted the production of inflammatory cytokines. CONCLUSIONS: The KDM-Histone-IRF pathways are suggested to mediate sex differences in cerebral ischemia. Epigenetic modification of stroke-related genes constitutes an important mechanism underlying the ischemic sexual dimorphism.


Subject(s)
Epigenesis, Genetic/genetics , Inflammation/genetics , Ischemic Stroke/genetics , Sex Characteristics , X Chromosome/genetics , Aged , Aged, 80 and over , Animals , Chromatin Immunoprecipitation , Cytokines/biosynthesis , Female , Genotype , Histone Demethylases/genetics , Humans , Male , Mice , Middle Aged , RNA, Small Interfering/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...