Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Epidemiol Health ; 45: e2023091, 2023.
Article in English | MEDLINE | ID: mdl-37857338

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has affected all Canadian families, with some impacted differently than others. Our study aims to: (1) determine the prevalence and transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among Canadian families, (2) identify predictors of infection susceptibility and severity of SARS-CoV-2, and (3) identify health and psychosocial impacts of the COVID-19 pandemic. This study builds upon the CHILD Cohort Study, an ongoing multi-ethnic general population prospective cohort consisting of 3,454 Canadian families with children born in Vancouver, Edmonton, Manitoba, and Toronto between 2009 and 2012. During the pandemic, CHILD households were invited to participate in the CHILD COVID-19 Add-On Study involving: (1) brief biweekly surveys about COVID-19 symptoms and testing; (2) quarterly questionnaires assessing COVID-19 exposure and testing, vaccination status, physical and mental health, and pandemic-driven life changes; and (3) in-home biological sampling kits to collect blood and stool. In total, 1,462 households (5,378 participants) consented to the CHILD COVID-19 Add-On Study: 2,803 children (mean±standard deviation [SD], 9.0±2.7 years; range, 0-17 years) and 2,576 adults (mean±SD, 43.0±6.5 years; range, 18-85 years). We will leverage the wealth of pre-pandemic CHILD data to identify risk and resilience factors for susceptibility and severity to the direct and indirect pandemic effects. Our short-term findings will inform key stakeholders and knowledge users to shape current and future pandemic responses. Additionally, this study provides a unique resource to study the long-term impacts of the pandemic as the CHILD Cohort Study continues.


Subject(s)
COVID-19 , Psychological Distress , Adult , Humans , Canada/epidemiology , Cohort Studies , COVID-19/epidemiology , COVID-19/psychology , Pandemics , Prospective Studies , SARS-CoV-2
2.
Traffic ; 23(11): 538-553, 2022 11.
Article in English | MEDLINE | ID: mdl-36117140

ABSTRACT

Those who study macrophage biology struggle with the decision whether to utilize primary macrophages derived directly from mice or opt for the convenience and genetic tractability of immortalized macrophage-like cell lines in in vitro studies. Particularly when it comes to studying phagocytosis and phagosomal maturation-a signature cellular process of the macrophage-many commonly used cell lines are not representative of what occurs in primary macrophages. A system developed by Mark Kamps' group, that utilizes conditionally constitutive activity of Hox transcription factors (Hoxb8 and Hoxa9) to immortalize differentiation-competent myeloid cell progenitors of mice, offers an alternative to the macrophage/macrophage-like dichotomy. In this resource, we will review the use of Hoxb8 and Hoxa9 as hematopoietic regulators to conditionally immortalize murine hematopoietic progenitor cells which retain their ability to differentiate into many functional immune cell types including macrophages, neutrophils, basophils, osteoclasts, eosinophils, dendritic cells, as well as limited potential for the generation of lymphocytes. We further demonstrate that the use of macrophages derived from Hoxb8/Hoxa9 immortalized progenitors and their similarities to bone marrow-derived macrophages. To supplement the existing data, mass spectrometry-based proteomics, flow cytometry, cytology, and in vitro phagosomal assays were conducted on macrophages derived from Hoxb8 immortalized progenitors and compared to bone marrow-derived macrophages and the macrophage-like cell line J774. We additionally propose the use of a standardized nomenclature to describe cells derived from the Hoxb8/Hoxa9 system in anticipation of their expanded use in the study of leukocyte cell biology.


Subject(s)
Hematopoietic Stem Cells , Macrophages , Animals , Cell Differentiation , Macrophages/metabolism , Mice , Transcription Factors/metabolism
3.
Proc Natl Acad Sci U S A ; 119(35): e2121333119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35994645

ABSTRACT

SNPs associated with human stroke risk have been identified in the intergenic region between Forkhead family transcription factors FOXF2 and FOXQ1, but we lack a mechanism for the association. FoxF2 is expressed in vascular mural pericytes and is important for maintaining pericyte number and stabilizing small vessels in zebrafish. The stroke-associated SNPs are located in a previously unknown transcriptional enhancer for FOXF2, functional in human cells and zebrafish. We identify critical enhancer regions for FOXF2 gene expression, including binding sites occupied by transcription factors ETS1, RBPJ, and CTCF. rs74564934, a stroke-associated SNP adjacent to the ETS1 binding site, decreases enhancer function, as does mutation of RPBJ sites. rs74564934 is significantly associated with the increased risk of any stroke, ischemic stroke, small vessel stroke, and elevated white matter hyperintensity burden in humans. Foxf2 has a conserved function cross-species and is expressed in vascular mural pericytes of the vessel wall. Thus, stroke-associated SNPs modulate enhancer activity and expression of a regulator of vascular stabilization, FOXF2, thereby modulating stroke risk.


Subject(s)
Forkhead Transcription Factors , Pericytes , Stroke , Animals , DNA, Intergenic/genetics , DNA, Intergenic/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Genomic Structural Variation/genetics , Humans , Pericytes/metabolism , Polymorphism, Single Nucleotide , Risk , Stroke/genetics , Stroke/metabolism , Transcriptional Activation/genetics
4.
Nat Commun ; 13(1): 3072, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35654768

ABSTRACT

Recognition of pathogen-or-damage-associated molecular patterns is critical to inflammation. However, most pathogen-or-damage-associated molecular patterns exist within intact microbes/cells and are typically part of non-diffusible, stable macromolecules that are not optimally immunostimulatory or available for immune detection. Partial digestion of microbes/cells following phagocytosis potentially generates new diffusible pathogen-or-damage-associated molecular patterns, however, our current understanding of phagosomal biology would have these molecules sequestered and destroyed within phagolysosomes. Here, we show the controlled release of partially-digested, soluble material from phagolysosomes of macrophages through transient, iterative fusion-fission events between mature phagolysosomes and the plasma membrane, a process we term eructophagy. Eructophagy is most active in proinflammatory macrophages and further induced by toll like receptor engagement. Eructophagy is mediated by genes encoding proteins required for autophagy and can activate vicinal cells by release of phagolysosomally-processed, partially-digested pathogen associated molecular patterns. We propose that eructophagy allows macrophages to amplify local inflammation through the processing and dissemination of pathogen-or-damage-associated molecular patterns.


Subject(s)
Pathogen-Associated Molecular Pattern Molecules , Phagosomes , Alarmins/metabolism , Humans , Inflammation/metabolism , Macrophages , Pathogen-Associated Molecular Pattern Molecules/metabolism , Phagocytosis , Phagosomes/metabolism
5.
J Biol Chem ; 298(1): 101459, 2022 01.
Article in English | MEDLINE | ID: mdl-34864055

ABSTRACT

Respiratory silicosis is a preventable occupational disease that develops secondary to the aspiration of crystalline silicon dioxide (silica) into the lungs, activation of the NLRP3 inflammasome, and IL-1ß production. Cathepsin Z has been associated with the development of inflammation and IL-1ß production; however, the mechanism of how cathepsin Z leads to IL-1ß production is unknown. Here, the requirement for cathepsin Z in silicosis was determined using WT mice and mice deficient in cathepsin Z. The activation of the NLRP3 inflammasome in macrophages was studied using WT and cathepsin Z-deficient bone marrow-derived murine dendritic cells and the human monocytic cell line THP-1. The cells were activated with silica, and IL-1ß release was determined using enzyme-linked immunosorbent assay or IL-1ß bioassays. The relative contribution of the active domain or integrin-binding domain of cathepsin Z was studied using recombinant cathepsin Z constructs and the α5 integrin neutralizing antibody. We report that the lysosomal cysteine protease cathepsin Z potentiates the development of inflammation associated with respiratory silicosis by augmenting NLRP3 inflammasome-derived IL-1ß expression in response to silica. The secreted cathepsin Z functions nonproteolytically via the internal integrin-binding domain to impact caspase-1 activation and the production of active IL-1ß through integrin α5 without affecting the transcription levels of NLRP3 inflammasome components. This work reveals a regulatory pathway for the NLRP3 inflammasome that occurs in an outside-in fashion and provides a link between extracellular cathepsin Z and inflammation. Furthermore, it reveals a level of NLRP3 inflammasome regulation that has previously only been found downstream of extracellular pathogens.


Subject(s)
Cathepsin Z , Inflammasomes , Animals , Cathepsin Z/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , Integrin alpha5/metabolism , Interleukin-1beta/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Silicon Dioxide/pharmacology , Silicosis/metabolism
6.
Sci Adv ; 7(17)2021 04.
Article in English | MEDLINE | ID: mdl-33893096

ABSTRACT

The extracellular bone resorbing lacuna of the osteoclast shares many characteristics with the degradative lysosome of antigen-presenting cells. γ-Interferon-inducible lysosomal thiol reductase (GILT) enhances antigen processing within lysosomes through direct reduction of antigen disulfides and maintenance of cysteine protease activity. In this study, we found the osteoclastogenic cytokine RANKL drove expression of GILT in osteoclast precursors in a STAT1-dependent manner, resulting in high levels of GILT in mature osteoclasts, which could be further augmented by γ-interferon. GILT colocalized with the collagen-degrading cysteine protease, cathepsin K, suggesting a role for GILT inside the osteoclastic resorption lacuna. GILT-deficient osteoclasts had reduced bone-resorbing capacity, resulting in impaired bone turnover and an osteopetrotic phenotype in GILT-deficient mice. We demonstrated that GILT could directly reduce the noncollagenous bone matrix protein SPARC, and additionally, enhance collagen degradation by cathepsin K. Together, this work describes a previously unidentified, non-immunological role for GILT in osteoclast-mediated bone resorption.

7.
Dev Dyn ; 244(2): 211-23, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25476803

ABSTRACT

BACKGROUND: The zebrafish genetic mutant iguana (igu) has defects in the ciliary basal body protein Dzip1, causing improper cilia formation. Dzip1 also interacts with the downstream transcriptional activators of Hedgehog (Hh), the Gli proteins, and Hh signaling is disrupted in igu mutants. Hh governs a wide range of developmental processes, including stabilizing developing blood vessels to prevent hemorrhage. Using igu mutant embryos and embryos treated with the Hh pathway antagonist cyclopamine, we conducted a microarray to determine genes involved in Hh signaling mediating vascular stability. RESULTS: We identified 40 genes with significantly altered expression in both igu mutants and cyclopamine-treated embryos. For a subset of these, we used in situ hybridization to determine localization during embryonic development and confirm the expression changes seen on the array. CONCLUSIONS: Through comparing gene expression changes in a genetic model of vascular instability with a chemical inhibition of Hh signaling, we identified a set of 40 differentially expressed genes with potential roles in vascular stabilization.


Subject(s)
Carrier Proteins/metabolism , Gene Expression Regulation, Developmental/physiology , Hedgehog Proteins/metabolism , Neovascularization, Physiologic/physiology , Signal Transduction/physiology , Zebrafish/embryology , Animals , Carrier Proteins/genetics , Hedgehog Proteins/genetics , Transcriptional Activation/physiology , Zebrafish/genetics
8.
J Clin Invest ; 124(11): 4877-81, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25250569

ABSTRACT

Patients with cerebral small-vessel disease (CSVD) exhibit perturbed end-artery function and have an increased risk for stroke and age-related cognitive decline. Here, we used targeted genome-wide association (GWA) analysis and defined a CSVD locus adjacent to the forkhead transcription factor FOXC1. Moreover, we determined that the linked SNPs influence FOXC1 transcript levels and demonstrated that patients as young as 1 year of age with altered FOXC1 function exhibit CSVD. MRI analysis of patients with missense and nonsense mutations as well as FOXC1-encompassing segmental duplication and deletion revealed white matter hyperintensities, dilated perivascular spaces, and lacunar infarction. In a zebrafish model, overexpression or morpholino-induced suppression of foxc1 induced cerebral hemorrhage. Inhibition of foxc1 perturbed platelet-derived growth factor (Pdgf) signaling, impairing neural crest migration and the recruitment of mural cells, which are essential for vascular stability. GWA analysis also linked the FOXC1-interacting transcription factor PITX2 to CSVD, and both patients with PITX2 mutations and murine Pitx2-/- mutants displayed brain vascular phenotypes. Together, these results extend the genetic etiology of stroke and demonstrate an increasing developmental basis for human cerebrovascular disease.


Subject(s)
Cerebral Small Vessel Diseases/genetics , Forkhead Transcription Factors/genetics , Homeodomain Proteins/genetics , Transcription Factors/genetics , Animals , Cerebral Hemorrhage/genetics , Codon, Nonsense , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Leukoencephalopathies/genetics , Linkage Disequilibrium , Mutation, Missense , Platelet-Derived Growth Factor/physiology , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Signal Transduction , Zebrafish , Homeobox Protein PITX2
SELECTION OF CITATIONS
SEARCH DETAIL
...