Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Pract Cases Emerg Med ; 4(3): 468-469, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32926716

ABSTRACT

CASE PRESENTATION: A 30-year-old healthy male presented with a complaint of chest pain after mild thoracic trauma sustained while rescuing stranded flood victims during Hurricane Harvey. Careful physical examination revealed a tender palpable cord along the lateral aspect of his chest consistent with a superficial thrombophlebitis. DISCUSSION: Mondor's disease is a superficial thrombophlebitis with myriad underlying causes that can involve the thoracic wall. Although Mondor's disease has been well described in the literature, this case describes a unique presentation in an austere environment with blunt trauma as the underlying cause.

2.
Sci Total Environ ; 657: 297-309, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30543979

ABSTRACT

The Des Moines Lobe (DML) of north-central Iowa has been artificially drained by subsurface drains and surface ditches to provide some of the most productive agricultural land in the world. Herein we report on the use of end-member mixing analysis (EMMA) models and the numerical model Soil and Water Assessment Tool (SWAT) to quantify the contribution of tile drainage to basin-scale water yields at various scales within the 2370 km2 Boone River watershed (BRW), a subbasin within the Des Moines River watershed. EMMA and SWAT methods suggested that tile drainage provided approximately 46 to 54% of annual discharge in the Boone River and during the March to June period, accounted for a majority of flow in the river. In the BRW subbasin of Lyons Creek, approximately 66% of the annual flow was sourced from tile drainage. Within the DML region, tile drainage contributes to basin-scale water yields at scales ranging from 40 to 16,000 km2, with downstream effects diminishing with increasing watershed size. Developing a better understanding of water sources contributing to river discharge is needed if mitigation and control strategies are going to be successfully targeted to reduce downstream nutrient export.

3.
J Environ Qual ; 43(1): 208-14, 2014 Jan.
Article in English | MEDLINE | ID: mdl-25602553

ABSTRACT

The Soil and Water Assessment Tool (SWAT) is a basin-scale hydrologic model developed by the United States Department of Agriculture Agricultural Research Service. SWAT's broad applicability, user-friendly model interfaces, and automatic calibration software have led to a rapid increase in the number of new users. These advancements also allow less experienced users to conduct SWAT modeling applications. In particular, the use of automated calibration software may produce simulated values that appear appropriate because they adequately mimic measured data used in calibration and validation. Autocalibrated model applications (and often those of unexperienced modelers) may contain input data errors and inappropriate parameter adjustments not readily identified by users or the autocalibration software. The objective of this research was to develop a program to assist users in the identification of potential model application problems. The resulting "SWAT Check" is a stand-alone Microsoft Windows program that (i) reads selected SWAT output and alerts users of values outside the typical range; (ii) creates process-based figures for visualization of the appropriateness of output values, including important outputs that are commonly ignored; and (iii) detects and alerts users of common model application errors. By alerting users to potential model application problems, this software should assist the SWAT community in developing more reliable modeling applications.

4.
Environ Sci Technol ; 40(4): 1286-99, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16572788

ABSTRACT

The Community Multi-Scale Air Quality (CMAQ) modeling system was used to investigate ozone and aerosol concentrations in the Pacific Northwest (PNW) during hot summertime conditions during July 1-15, 1996. Two emission inventories (El) were developed: emissions for the first El were based upon the National Emission Trend 1996 (NET96) database and the BEIS2 biogenic emission model, and emissions for the second El were developed through a "bottom up" approach that included biogenic emissions obtained from the GLOBEIS model. The two simulations showed that elevated PM2.5 concentrations occurred near and downwind of the Interstate-5 corridor along the foothills of the Cascade Mountains and in forested areas of central Idaho. The relative contributions of organic and inorganic aerosols varied by region, but generally organic aerosols constituted the largest fraction of PM2.5. In wilderness areas near the 1-5 corridor, organic carbon from anthropogenic sources contributed approximately 50% of the total organic carbon with the remainder from biogenic precursors, while in wilderness areas in Idaho, biogenic organic carbon accounted for 80% of the total organic aerosol. Regional analysis of the secondary organic aerosol formation in the Columbia River Gorge, Central Idaho, and the Olympics/Puget Sound showed that the production rate of secondary organic carbon depends on local terpene concentrations and the local oxidizing capacity of the atmosphere, which was strongly influenced by anthropogenic emissions. Comparison with observations from 12 IMPROVE sites and 21 ozone monitoring sites showed that results from the two El simulations generally bracketed the average observed PM parameters and that errors calculated for the model results were within acceptable bounds. Analysis across all statistical parameters indicated that the NW-AIRQUEST El solution performed better at predicting PM2.5, PM1, and beta(ext) even though organic carbon PM was over-predicted, and the NET96 El solution performed better with regard to the inorganic aerosols. For the NW-AIRQUEST El solution, the normalized bias was 30% and the normalized absolute error was 49% for PM2.5 mass. The NW-AIRQUEST solution slightly overestimated peak hourly ozone downwind of urban areas, while the NET96 solution slightly underestimated peak values, and both solutions over-predicted average 03 concentrations across the domain by approximately 6 ppb.


Subject(s)
Air Pollutants/analysis , Models, Theoretical , Ozone/analysis , Aerosols/analysis , Carbon/analysis , Environmental Monitoring , Idaho , Nitrates/analysis , Oregon , Particle Size , Quaternary Ammonium Compounds/analysis , Reproducibility of Results , Sulfates/analysis , Washington
SELECTION OF CITATIONS
SEARCH DETAIL
...