Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Osteoarthritis Cartilage ; 32(6): 680-689, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38432607

ABSTRACT

OBJECTIVE: Phlpp1 inhibition is a potential therapeutic strategy for cartilage regeneration and prevention of post-traumatic osteoarthritis (PTOA). To understand how Phlpp1 loss affects cartilage structure, cartilage elastic modulus was measured with atomic force microscopy (AFM) in male and female mice after injury. METHODS: Osteoarthritis was induced in male and female Wildtype (WT) and Phlpp1-/- mice by destabilization of the medial meniscus (DMM). At various timepoints post-injury, activity was measured, and knee joints examined with AFM and histology. In another cohort of WT mice, the PHLPP inhibitor NSC117079 was intra-articularly injected 4 weeks after injury. RESULTS: Male WT mice showed decreased activity and histological signs of cartilage damage at 12 but not 6-weeks post-DMM. Female mice showed a less severe response to DMM by comparison, with no histological changes seen at any time point. In both sexes the elastic modulus of medial condylar cartilage was decreased in WT mice but not Phlpp1-/- mice after DMM as measured by AFM. By 6-weeks, cartilage modulus had decreased from 2 MPa to 1 MPa in WT mice. Phlpp1-/- mice showed no change in modulus at 6-weeks and only a 25% decrease at 12-weeks. The PHLPP inhibitor NSC117079 protected cartilage structure and prevented signs of OA 6-weeks post-injury. CONCLUSIONS: AFM is a sensitive method for detecting early changes in articular cartilage post-injury. Phlpp1 suppression, either through genetic deletion or pharmacological inhibition, protects cartilage degradation in a model of PTOA, validating Phlpp1 as a therapeutic target for PTOA.


Subject(s)
Cartilage, Articular , Phosphoprotein Phosphatases , Animals , Cartilage, Articular/pathology , Cartilage, Articular/drug effects , Phosphoprotein Phosphatases/antagonists & inhibitors , Phosphoprotein Phosphatases/genetics , Male , Female , Mice , Disease Models, Animal , Nuclear Proteins/genetics , Nuclear Proteins/antagonists & inhibitors , Mice, Knockout , Microscopy, Atomic Force , Osteoarthritis/pathology , Elastic Modulus , Osteoarthritis, Knee/etiology , Osteoarthritis, Knee/pathology , Tibial Meniscus Injuries/complications
2.
Curr Osteoporos Rep ; 21(6): 842-853, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37759135

ABSTRACT

PURPOSE OF REVIEW: The purpose of this article is to review the current understanding of inflammatory processes on bone, including direct impacts of inflammatory factors on bone cells, the effect of senescence on inflamed bone, and the critical role of inflammation in bone pain and healing. RECENT FINDINGS: Advances in osteoimmunology have provided new perspectives on inflammatory bone loss in recent years. Characterization of so-called inflammatory osteoclasts has revealed insights into physiological and pathological bone loss. The identification of inflammation-associated senescent markers in bone cells indicates that therapies that reduce senescent cell burden may reverse bone loss caused by inflammatory processes. Finally, novel studies have refined the role of inflammation in bone healing, including cross talk between nerves and bone cells. Except for the initial stages of fracture healing, inflammation has predominately negative effects on bone and increases fracture risk. Eliminating senescent cells, priming the osteo-immune axis in bone cells, and alleviating pro-inflammatory cytokine burden may ameliorate the negative effects of inflammation on bone.


Subject(s)
Bone Density , Bone Diseases , Humans , Bone and Bones/pathology , Osteoclasts/physiology , Bone Diseases/pathology , Inflammation
3.
Sensors (Basel) ; 23(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36850434

ABSTRACT

The mechanical properties of biological tissues influence their function and can predict degenerative conditions before gross histological or physiological changes are detectable. This is especially true for structural tissues such as articular cartilage, which has a primarily mechanical function that declines after injury and in the early stages of osteoarthritis. While atomic force microscopy (AFM) has been used to test the elastic modulus of articular cartilage before, there is no agreement or consistency in methodologies reported. For murine articular cartilage, methods differ in two major ways: experimental parameter selection and sample preparation. Experimental parameters that affect AFM results include indentation force and cantilever stiffness; these are dependent on the tip, sample, and instrument used. The aim of this project was to optimize these experimental parameters to measure murine articular cartilage elastic modulus by AFM micro-indentation. We first investigated the effects of experimental parameters on a control material, polydimethylsiloxane gel (PDMS), which has an elastic modulus on the same order of magnitude as articular cartilage. Experimental parameters were narrowed on this control material, and then finalized on wildtype C57BL/6J murine articular cartilage samples that were prepared with a novel technique that allows for cryosectioning of epiphyseal segments of articular cartilage and long bones without decalcification. This technique facilitates precise localization of AFM measurements on the murine articular cartilage matrix and eliminates the need to separate cartilage from underlying bone tissues, which can be challenging in murine bones because of their small size. Together, the new sample preparation method and optimized experimental parameters provide a reliable standard operating procedure to measure microscale variations in the elastic modulus of murine articular cartilage.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Mice , Elastic Modulus , Microscopy, Atomic Force , Bone and Bones
4.
Bone ; 159: 116391, 2022 06.
Article in English | MEDLINE | ID: mdl-35314385

ABSTRACT

Long bones are formed and repaired through the process of endochondral ossification. Activation of G protein-coupled receptor (GPCR) signaling pathways is crucial for skeletal development and long bone growth. G protein-gated inwardly-rectifying K+ (GIRK) channel genes are key functional components and effectors of GPCR signaling pathways in excitable cells of the heart and brain, but their roles in non-excitable cells that directly contribute to endochondral bone formation have not been studied. In this study, we analyzed skeletal phenotypes of Girk2-/-, Girk3-/- and Girk2/3-/- mice. Bones from 12-week-old Girk2-/- mice were normal in length, but femurs and tibiae from Girk3-/- and Girk2/3-/- mice were longer than age-matched controls at 12-weeks-old. Epiphyseal chondrocytes from 5-day-old Girk3-/- mice expressed higher levels of genes involved in collagen chain trimerization and collagen fibril assembly, lower levels of genes encoding VEGF receptors, and produced larger micromasses than wildtype chondrocytes in vitro. Girk3-/- chondrocytes were also more responsive to the kappa opioid receptor (KOR) ligand dynorphin, as evidenced by greater pCREB expression, greater cAMP and GAG production, and upregulation of Col2a1 and Sox9 transcripts. Imaging studies showed that Kdr (Vegfr2) and endomucin expression was dramatically reduced in bones from young Girk3-/- mice, supporting a role for delayed vasculogenesis and extended postnatal endochondral bone growth. Together these data indicate that GIRK3 controls several processes involved in bone lengthening.


Subject(s)
Bone Lengthening , G Protein-Coupled Inwardly-Rectifying Potassium Channels , Analgesics, Opioid/metabolism , Animals , Brain/metabolism , Chondrocytes/metabolism , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Mice
5.
Sci Rep ; 11(1): 18921, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34584110

ABSTRACT

Articular cartilage functions as a shock absorber and facilitates the free movement of joints. Currently, there are no therapeutic drugs that promote the healing of damaged articular cartilage. Limitations associated with the two clinically relevant cell populations, human articular chondrocytes and mesenchymal stem cells, necessitate finding an alternative cell source for cartilage repair. Human embryonic stem cells (hESCs) provide a readily accessible population of self-renewing, pluripotent cells with perceived immunoprivileged properties for cartilage generation. We have developed a robust method to generate 3D, scaffold-free, hyaline cartilage tissue constructs from hESCs that are composed of numerous chondrocytes in lacunae, embedded in an extracellular matrix containing Type II collagen, sulphated glycosaminoglycans and Aggrecan. The elastic (Young's) modulus of the hESC-derived cartilage tissue constructs (0.91 ± 0.08 MPa) was comparable to full-thickness human articular cartilage (0.87 ± 0.09 MPa). Moreover, we have successfully scaled up the size of the scaffold-free, 3D hESC-derived cartilage tissue constructs to between 4.5 mm and 6 mm, thus enhancing their suitability for clinical application.


Subject(s)
Cartilage, Articular/growth & development , Human Embryonic Stem Cells/metabolism , Tissue Engineering/methods , Aggrecans/metabolism , Cartilage/metabolism , Cartilage, Articular/metabolism , Cell Differentiation , Cells, Cultured , Chondrocytes/metabolism , Chondrogenesis , Collagen Type II/metabolism , Extracellular Matrix/metabolism , Glycosaminoglycans/metabolism , Guided Tissue Regeneration/methods , Human Embryonic Stem Cells/transplantation , Humans , Mesenchymal Stem Cells/metabolism
7.
J Bone Miner Res ; 36(5): 986-999, 2021 05.
Article in English | MEDLINE | ID: mdl-33434347

ABSTRACT

Endochondral ossification is tightly controlled by a coordinated network of signaling cascades including parathyroid hormone (PTH). Pleckstrin homology (PH) domain and leucine rich repeat phosphatase 1 (Phlpp1) affects endochondral ossification by suppressing chondrocyte proliferation in the growth plate, longitudinal bone growth, and bone mineralization. As such, Phlpp1-/- mice have shorter long bones, thicker growth plates, and proportionally larger growth plate proliferative zones. The goal of this study was to determine how Phlpp1 deficiency affects PTH signaling during bone growth. Transcriptomic analysis revealed greater PTH receptor 1 (Pth1r) expression and enrichment of histone 3 lysine 27 acetylation (H3K27ac) at the Pth1r promoter in Phlpp1-deficient chondrocytes. PTH (1-34) enhanced and PTH (7-34) attenuated cell proliferation, cAMP signaling, cAMP response element-binding protein (CREB) phosphorylation, and cell metabolic activity in Phlpp1-inhibited chondrocytes. To understand the role of Pth1r action in the endochondral phenotypes of Phlpp1-deficient mice, Phlpp1-/- mice were injected with Pth1r ligand PTH (7-34) daily for the first 4 weeks of life. PTH (7-34) reversed the abnormal growth plate and long-bone growth phenotypes of Phlpp1-/- mice but did not rescue deficits in bone mineral density or trabecular number. These results show that elevated Pth1r expression and signaling contributes to increased proliferation in Phlpp1-/- chondrocytes and shorter bones in Phlpp1-deficient mice. Our data reveal a novel molecular relationship between Phlpp1 and Pth1r in chondrocytes during growth plate development and longitudinal bone growth. © 2021 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Phosphoric Monoester Hydrolases , Receptor, Parathyroid Hormone, Type 1 , Animals , Blood Proteins , Bone Development , Chondrocytes , Fibroblast Growth Factor-23 , Leucine , Mice , Mice, Knockout , Parathyroid Hormone , Phosphoprotein Phosphatases , Phosphoproteins , Receptor, Parathyroid Hormone, Type 1/genetics
8.
Anal Chem ; 92(15): 10659-10667, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32598134

ABSTRACT

Bovine pericardium (BP) is a vascular biomaterial used in cardiovascular surgery that is typically cross-linked for masking antigenicity and enhance stability. There is a need for biochemical evaluation of the tissue properties prior to implantation to ensure that quality and reliability standards are met. Here, engineered antigen removed BP (ARBP) that was cross-linked with 0.2% and 0.6% glutaraldehyde (GA), and further calcified in vitro to simulate graft calcifications upon implantation was characterized nondestructively using fluorescence lifetime imaging (FLIm) to identify regions of interest which were then assessed by Raman spectroscopy. We observed that the tissue fluorescence lifetime shortened, and that Raman bands at 856, 935, 1282, and 1682 cm-1 decreased, and at 1032 and 1627 cm-1 increased with increasing GA cross-linking. Independent classification analysis based on fluorescence lifetime and on Raman spectra discriminated between GA-ARBP and untreated ARBP with an accuracy of 91% and 66%, respectively. Pearson's correlation analysis showed a strong correlation between pyridinium cross-links measured with high-performance liquid chromatography and fluorescence lifetime measured at 380-400 nm (R = -0.76, p = 0.00094), as well as Raman bands at 856 cm-1 for hydroxy-proline (R = -0.68, p = 0.0056) and at 1032 cm-1 for hydroxy-pyridinium (R = 0.74, p = 0.0016). Calcified areas of GA cross-linked tissue showed characteristic hydroxyapatite (959 and 1038 cm-1) bands in the Raman spectrum and fluorescence lifetime shortened by 0.4 ns compared to uncalcified regions. FLIm-guided Raman imaging could rapidly identify degrees of cross-linking and detected calcified regions with high chemical specificity, an ability that can be used to monitor tissue engineering processes for applications in regenerative medicine.


Subject(s)
Biocompatible Materials/metabolism , Calcification, Physiologic , Optical Imaging/methods , Pericardium/diagnostic imaging , Pericardium/metabolism , Spectrum Analysis, Raman , Animals , Cattle
SELECTION OF CITATIONS
SEARCH DETAIL
...