Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Eur J Radiol ; 146: 110080, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34875474

ABSTRACT

PURPOSE: Computed tomography (CT) might be a good diagnostic test to accurately quantify calcium in vascular beds but there are multiple factors influencing the quantification. The aim of this study was to investigate the influence of different computed tomography protocol settings in the quantification of calcium in the lower extremities using modified Agatston and volume scores. METHODS: Fresh-frozen human legs were scanned at different tube current protocols and reconstructed at different slice thickness. Two different iterative reconstruction protocols for conventional CT images were compared. Calcium was manually scored using modified Agatston and volume scores. Outcomes were statistically analyzed using Wilcoxon signed-rank tests and mean absolute and relative differences were plotted in Bland-Altman plots. RESULTS: Of the 20 legs, 16 had CT detectable calcifications. Differences between thick and thin slice reconstruction protocols were 129 Agatston units and 125% for Agatston and 78.4 mm3 and 57.8% for volume (all p ≤ 0.001). No significant differences were found between low and high tube current protocols. Differences between iDose4 and IMR reconstruction protocols for modified Agatston were 34.2 Agatston units and 17.7% and the volume score 33.5 mm3 and 21.2% (all p ≤ 0.001). CONCLUSIONS: Slice thickness reconstruction and reconstruction method protocols influenced the modified Agatston and volume scores in leg arteries, but tube current and different observers did not have an effect. This data emphasizes the need for standardized quantification of leg artery calcifications. Possible implications are in the development of a more universal quantification method, independent of the type of scan and vasculature.


Subject(s)
Calcium , Coronary Artery Disease , Algorithms , Cadaver , Calcium/analysis , Coronary Artery Disease/diagnostic imaging , Humans , Leg/diagnostic imaging , Phantoms, Imaging , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted , Tomography, X-Ray Computed
2.
Behav Brain Res ; 378: 112237, 2020 01 27.
Article in English | MEDLINE | ID: mdl-31525404

ABSTRACT

Voluntary exercise increases stress resistance by modulating stress-responsive neurocircuitry, including brainstem serotonergic systems. However, it remains unknown how exercise produces adaptations to serotonergic systems. Recruitment of serotonergic systems during repeated, daily exercise could contribute to the adaptations in serotonergic systems following exercise, but whether repeated voluntary exercise recruits serotonergic systems is unknown. In this study, we investigated the effects of six weeks of voluntary or forced exercise on rat brain serotonergic systems. Specifically, we analyzed c-Fos and FosB/ΔFosB as markers of acute and chronic cellular activation, respectively, in combination with tryptophan hydroxylase, a marker of serotonergic neurons, within subregions of the dorsal raphe nucleus using immunohistochemical staining. Compared to sedentary controls, rats exposed to repeated forced exercise, but not repeated voluntary exercise, displayed decreased c-Fos expression in serotonergic neurons in the rostral dorsal portion of the dorsal raphe nucleus (DRD) and increased c-Fos expression in serotonergic neurons in the caudal DR (DRC), and interfascicular part of the dorsal raphe nucleus (DRI) during the active phase of the diurnal activity rhythm. Similarly, increases in c-Fos expression in serotonergic neurons in the DRC, DRI, and ventral portion of the dorsal raphe nucleus (DRV) were observed in rats exposed to repeated forced exercise, compared to rats exposed to repeated voluntary exercise. Six weeks of forced exercise, relative to the sedentary control condition, also increased FosB/ΔFosB expression in DRD, DRI, and DRV serotonergic neurons. While both voluntary and forced exercise increase stress resistance, these results suggest that repeated forced exercise, but not repeated voluntary exercise, increases activation of DRI serotonergic neurons, an effect that may contribute to the stress resistance effects of forced exercise. These results also suggest that mechanisms of exercise-induced stress resistance may differ depending on the controllability of the exercise.


Subject(s)
Behavior, Animal/physiology , Motor Activity/physiology , Physical Conditioning, Animal/physiology , Proto-Oncogene Proteins c-fos/metabolism , Raphe Nuclei/metabolism , Serotonergic Neurons/metabolism , Serotonin/metabolism , Tryptophan Hydroxylase/metabolism , Animals , Immunohistochemistry , Male , Rats , Rats, Inbred F344
3.
Neuropharmacology ; 148: 257-271, 2019 04.
Article in English | MEDLINE | ID: mdl-30579884

ABSTRACT

Caffeine is the most commonly used drug in the world. However, animal studies suggest that chronic consumption of caffeine during adolescence can result in enhanced anxiety-like behavioral responses during adulthood. One mechanism through which chronic caffeine administration may influence subsequent anxiety-like responses is through actions on brainstem serotonergic systems. In order to explore potential effects of chronic caffeine consumption on brainstem serotonergic systems, we evaluated the effects of a 28-day exposure to chronic caffeine (0.3 g/L; postnatal day 28-56) or vehicle administration in the drinking water, followed by 24 h caffeine withdrawal, and subsequent challenge with caffeine (30 mg/kg; s.c.) or vehicle in adolescent male rats. In Experiment 1, acute caffeine challenge induced a widespread activation of serotonergic neurons throughout the dorsal raphe nucleus (DR); this effect was attenuated in rats that had been exposed to chronic caffeine consumption. In Experiment 2, acute caffeine administration profoundly decreased tph2 and slc22a3 mRNA expression throughout the DR, with no effects on htr1a or slc6a4 mRNA expression. Chronic caffeine exposure for four weeks during adolescence was sufficient to decrease tph2 mRNA expression in the DR measured 28 h after caffeine withdrawal. Chronic caffeine administration during adolescence did not impact the ability of acute caffeine to decrease tph2 or slc22a3 mRNA expression. Together, these data suggest that both chronic caffeine administration during adolescence and acute caffeine challenge during adulthood are important determinants of serotonergic function and serotonergic gene expression, effects that may contribute to chronic effects of caffeine on anxiety-like responses.


Subject(s)
Caffeine/pharmacology , Dorsal Raphe Nucleus/drug effects , Serotonergic Neurons/drug effects , Age Factors , Animals , Dorsal Raphe Nucleus/metabolism , Down-Regulation/drug effects , Gene Expression/drug effects , Male , Organic Cation Transport Proteins/biosynthesis , Rats , Receptor, Serotonin, 5-HT1A/biosynthesis , Serotonin Plasma Membrane Transport Proteins/biosynthesis , Tryptophan Hydroxylase/biosynthesis
4.
Eur Radiol Exp ; 2(1): 30, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30402740

ABSTRACT

BACKGROUND: Computed tomography (CT) emphysema quantification is affected by both radiation dose (i.e. image noise) and reconstruction technique. At reduced dose, filtered back projection (FBP) results in an overestimation of the amount of emphysema due to higher noise levels, while the use of iterative reconstruction (IR) can result in an underestimation due to reduced noise. The objective of this study was to determine the influence of dose reduction and hybrid IR (HIR) or model-based IR (MIR) on CT emphysema quantification. METHODS: Twenty-two patients underwent inspiratory chest CT scan at routine radiation dose and at 45%, 60% and 75% reduced radiation dose. Acquisitions were reconstructed with FBP, HIR and MIR. Emphysema was quantified using the 15th percentile of the attenuation curve and the percentage of voxels below -950 HU. To determine whether the use of a different percentile or HU threshold is more accurate at reduced dose levels and with IR, additional measurements were performed using different percentiles and HU thresholds to determine the optimal combination. RESULTS: Dose reduction resulted in a significant overestimation of emphysema, while HIR and MIR resulted in an underestimation. Lower HU thresholds with FBP at reduced dose and higher HU thresholds with HIR and MIR resulted in emphysema percentages comparable to the reference. The 15th percentile quantification method showed similar results as the HU threshold method. CONCLUSIONS: This within-patients study showed that CT emphysema quantification is significantly affected by dose reduction and IR. This can potentially be solved by adapting commonly used thresholds.

5.
Med Phys ; 45(7): 3031-3042, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29749624

ABSTRACT

PURPOSE: Spectral CT using a dual layer detector offers the possibility of retrospectively introducing spectral information to conventional CT images. In theory, the dual-layer technology should not come with a dose or image quality penalty for conventional images. In this study, we evaluate the influence of a dual-layer detector (IQon Spectral CT, Philips Healthcare) on the image quality of conventional CT images, by comparing these images with those of a conventional but otherwise technically comparable single-layer CT scanner (Brilliance iCT, Philips Healthcare), by means of phantom experiments. METHODS: For both CT scanners, conventional CT images were acquired using four adult scanning protocols: (a) body helical, (b) body axial, (c) head helical, and (d) head axial. A CATPHAN 600 phantom was scanned to conduct an assessment of image quality metrics at equivalent (CTDI) dose levels. Noise was characterized by means of noise power spectra (NPS) and standard deviation (SD) of a uniform region, and spatial resolution was evaluated with modulation transfer functions (MTF) of a tungsten wire. In addition, contrast-to-noise ratio (CNR), image uniformity, CT number linearity, slice thickness, slice spacing, and spatial linearity were measured and evaluated. Additional measurements of CNR, resolution and noise were performed in two larger phantoms. RESULTS: The resolution levels at 50%, 10%, and 5% MTF of the iCT and IQon showed small, but significant differences up to 0.25 lp/cm for body scans, and up to 0.2 lp/cm for head scans in favor of the IQon. The iCT and IQon showed perfect CT linearity for body scans, but for head scans both scanners showed an underestimation of the CT numbers of materials with a high opacity. Slice thickness was slightly overestimated for both scanners. Slice spacing was comparable and reconstructed correctly. In addition, spatial linearity was excellent for both scanners, with a maximum error of 0.11 mm. CNR was higher on the IQon compared to the iCT for both normal and larger phantoms with differences up to 0.51. Spatial resolution did not change with phantom size, but noise levels increased significantly. For head scans, IQon had a noise level that was significantly lower than the iCT, on the other hand IQon showed noise levels significantly higher than the iCT for body scans. Still, these differences were well within the specified range of performance of iCT scanners. CONCLUSIONS: At equivalent dose levels, this study showed similar quality of conventional images acquired on iCT and IQon for medium-sized phantoms and slightly degraded image quality for (very) large phantoms at lower tube voltages on the IQon. Accordingly, it may be concluded that the introduction of a dual-layer detector neither compromises image quality of conventional images nor increases radiation dose for normal-sized patients, and slightly degrades dose efficiency for large patients at 120 kVp and lower tube voltages.


Subject(s)
Phantoms, Imaging , Tomography, X-Ray Computed/instrumentation , Image Processing, Computer-Assisted , Quality Control , Radiation Dosage , Signal-To-Noise Ratio
6.
Int J Cardiovasc Imaging ; 34(8): 1265-1275, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29516228

ABSTRACT

We investigated the feasibility and extent to which iodine concentration can be reduced in computed tomography angiography imaging of the aorta and coronary arteries using low tube voltage and virtual monochromatic imaging of 3 major dual-energy CT (DECT) vendors. A circulation phantom was imaged with dual source CT (DSCT), gemstone spectral imaging (GSI) and dual-layer spectral detector CT (SDCT). For each scanner, a reference scan was acquired at 120 kVp using routine iodine concentration (300 mg I/ml). Subsequently, scans were acquired at lowest possible tube potential (70, 80, 80 kVp, respectively), and DECT-mode (80/150Sn, 80/140 and 120 kVp, respectively) in arterial phase after administration of iodine (300, 240, 180, 120, 60, 30 mg I/ml). Objective image quality was evaluated using attenuation, CNR and dose corrected CNR (DCCNR) measured in the aorta and left main coronary artery. Average DCCNR at reference was 227.0, 39.7 and 60.2 for DSCT, GSI and SDCT. Maximum iodine concentration reduction without loss of DCCNR was feasible down to 180 mg I/ml (40% reduced) for DSCT (DCCNR 467.1) and GSI (DCCNR 46.1) using conventional CT low kVp, and 120 mg I/ml (60% reduced) for SDCT (DCCNR 171.5) using DECT mode. Low kVp scanning and DECT allows for 40-60% iodine reduction without loss in image quality compared to reference. Optimal scan protocol and to which extent varies per vendor. Further patient studies are needed to extend and translate our findings to clinical practice.


Subject(s)
Aorta/diagnostic imaging , Computed Tomography Angiography/methods , Contrast Media/administration & dosage , Coronary Vessels/diagnostic imaging , Iohexol/analogs & derivatives , Phantoms, Imaging , Computed Tomography Angiography/standards , Feasibility Studies , Humans , Image Processing, Computer-Assisted , Iohexol/administration & dosage , Radiation Dosage , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/standards
7.
Eur Radiol ; 28(1): 143-150, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28695359

ABSTRACT

OBJECTIVE: To assess the performance of hybrid (HIR) and model-based iterative reconstruction (MIR) in patients with urolithiasis at reduced-dose computed tomography (CT). METHODS: Twenty patients scheduled for unenhanced abdominal CT for follow-up of urolithiasis were prospectively included. Routine dose acquisition was followed by three low-dose acquisitions at 40%, 60% and 80% reduced doses. All images were reconstructed with filtered back projection (FBP), HIR and MIR. Urolithiasis detection rates, gall bladder, appendix and rectosigmoid evaluation and overall subjective image quality were evaluated by two observers. RESULTS: 74 stones were present in 17 patients. Half the stones were not detected on FBP at the lowest dose level, but this improved with MIR to a sensitivity of 100%. HIR resulted in a slight decrease in sensitivity at the lowest dose to 72%, but outperformed FBP. Evaluation of other structures with HIR at 40% and with MIR at 60% dose reductions was comparable to FBP at routine dose, but 80% dose reduction resulted in non-evaluable images. CONCLUSIONS: CT radiation dose for urolithiasis detection can be safely reduced by 40 (HIR)-60 (MIR) % without affecting assessment of urolithiasis, possible extra-urinary tract pathology or overall image quality. KEY POINTS: • Iterative reconstruction can be used to substantially lower the radiation dose. • This allows for radiation reduction without affecting sensitivity of stone detection. • Possible extra-urinary tract pathology evaluation is feasible at 40-60% reduced dose.


Subject(s)
Image Processing, Computer-Assisted/methods , Radiation Dosage , Tomography, X-Ray Computed/methods , Urolithiasis/diagnostic imaging , Algorithms , Female , Humans , Male , Middle Aged , Prospective Studies , Radiographic Image Interpretation, Computer-Assisted/methods , Urinary Tract/diagnostic imaging
8.
Transl Psychiatry ; 7(10): e1246, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28972592

ABSTRACT

Multiple lines of evidence implicate brain serotonin (5-hydroxytryptamine; 5-HT) system dysfunction in the pathophysiology of stressor-related and anxiety disorders. Here we investigate the influence of constitutively deficient 5-HT synthesis on stressor-related anxiety-like behaviors using Tryptophan hydroxylase 2 (Tph2) mutant mice. Functional assessment of c-Fos after associated foot shock, electrophysiological recordings of GABAergic synaptic transmission, differential expression of the Slc6a4 gene in serotonergic neurons were combined with locomotor and anxiety-like measurements in different contextual settings. Our findings indicate that constitutive Tph2 inactivation and consequential lack of 5-HT synthesis in Tph2 null mutant mice (Tph2-/-) results in increased freezing to associated foot shock and a differential c-Fos activity pattern in the basolateral complex of the amygdala. This is accompanied by altered GABAergic transmission as observed by recordings of inhibitory postsynaptic currents on principal neurons in the basolateral nucleus, which may explain increased fear associated with hyperlocomotion and escape-like responses in aversive inescapable contexts. In contrast, lifelong 5-HT deficiency as observed in Tph2 heterozygous mice (Tph+/-) is able to be compensated through reduced GABAergic transmission in the basolateral nucleus of the amygdala based on Slc6a4 mRNA upregulation in subdivisions of dorsal raphe neurons. This results in increased activity of the basolateral nucleus of the amygdala due to associated foot shock. In conclusion, our results reflect characteristic syndromal dimensions of panic disorder and agoraphobia. Thus, constitutive lack of 5-HT synthesis influence the risk for anxiety- and stressor-related disorders including panic disorder and comorbid agoraphobia through the absence of GABAergic-dependent compensatory mechanisms in the basolateral nucleus of the amygdala.


Subject(s)
Amygdala/physiopathology , Anxiety/physiopathology , Escape Reaction , Panic Disorder/physiopathology , Serotonin/physiology , Agoraphobia/physiopathology , Amygdala/metabolism , Animals , Electroshock , Fear , Inhibitory Postsynaptic Potentials , Male , Mice, Knockout , Raphe Nuclei/metabolism , Serotonin/deficiency , Serotonin Plasma Membrane Transport Proteins/metabolism , Tryptophan Hydroxylase/genetics , gamma-Aminobutyric Acid/metabolism
9.
PLoS One ; 12(4): e0175714, 2017.
Article in English | MEDLINE | ID: mdl-28410386

ABSTRACT

BACKGROUND: To study dose reduction using iterative reconstruction (IR) for pediatric great vessel stent computed tomography (CT). METHODS: Five different great vessel stents were separately placed in a gel-containing plastic holder within an anthropomorphic chest phantom. The stent lumen was filled with diluted contrast gel. CT acquisitions were performed at routine dose, 52% and 81% reduced dose and reconstructed with filtered back projection (FBP) and IR. Objective image quality in terms of noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) as well as subjective image quality were evaluated. RESULTS: Noise, SNR and CNR were improved with IR at routine and 52% reduced dose, compared to FBP at routine dose. The lowest dose level resulted in decreased objective image quality with both FBP and IR. Subjective image quality was excellent at all dose levels. CONCLUSION: IR resulted in improved objective image quality at routine dose and 52% reduced dose, while objective image quality deteriorated at 81% reduced dose. Subjective image quality was not affected by dose reduction.


Subject(s)
Stents , Tomography, X-Ray Computed , Algorithms , Child , Humans , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted , Signal-To-Noise Ratio
10.
Eur Radiol ; 27(10): 4351-4359, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28374079

ABSTRACT

OBJECTIVES: To investigate the accuracy of bone mineral density (BMD) quantification using dual-layer spectral detector CT (SDCT) at various scan protocols. METHODS: Two validated anthropomorphic phantoms containing inserts of 50-200 mg/cm3 calcium hydroxyapatite (HA) were scanned using a 64-slice SDCT scanner at various acquisition protocols (120 and 140 kVp, and 50, 100 and 200 mAs). Regions of interest (ROIs) were placed in each insert and mean attenuation profiles at monochromatic energy levels (90-200 keV) were constructed. These profiles were fitted to attenuation profiles of pure HA and water to calculate HA concentrations. For comparison, one phantom was scanned using dual energy X-ray absorptiometry (DXA). RESULTS: At both 120 and 140 kVp, excellent correlations (R = 0.97, P < 0.001) were found between true and measured HA concentrations. Mean error for all measurements at 120 kVp was -5.6 ± 5.7 mg/cm3 (-3.6 ± 3.2%) and at 140 kVp -2.4 ± 3.7 mg/cm3 (-0.8 ± 2.8%). Mean measurement errors were smaller than 6% for all acquisition protocols. Strong linear correlations (R2 ≥ 0.970, P < 0.001) with DXA were found. CONCLUSIONS: SDCT allows for accurate BMD quantification and potentially opens up the possibility for osteoporosis evaluation and opportunistic screening in patients undergoing SDCT for other clinical indications. However, patient studies are needed to extend and translate our findings. KEY POINTS: • Dual-layer spectral detector CT allows for accurate bone mineral density quantification. • BMD measurements on SDCT are strongly linearly correlated to DXA. • SDCT, acquired for several indications, may allow for evaluation of osteoporosis. • This potentially opens up the possibility for opportunistic osteoporosis screening.


Subject(s)
Bone Density , Phantoms, Imaging , Tomography, X-Ray Computed/methods , Absorptiometry, Photon , Humans , Osteoporosis/diagnostic imaging
11.
J Med Econ ; 20(6): 565-573, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28097913

ABSTRACT

BACKGROUND: A recent retrospective comparative effectiveness study found that use of the FLOSEAL Hemostatic Matrix in cardiac surgery was associated with significantly lower risks of complications, blood transfusions, surgical revisions, and shorter length of surgery than use of SURGIFLO Hemostatic Matrix. These outcome improvements in cardiac surgery procedures may translate to economic savings for hospitals and payers. OBJECTIVE: The objective of this study was to estimate the cost-consequence of two flowable hemostatic matrices (FLOSEAL or SURGIFLO) in cardiac surgeries for US hospitals. METHODS: A cost-consequence model was constructed using clinical outcomes from a previously published retrospective comparative effectiveness study of FLOSEAL vs SURGIFLO in adult cardiac surgeries. The model accounted for the reported differences between these products in length of surgery, rates of major and minor complications, surgical revisions, and blood product transfusions. Costs were derived from Healthcare Cost and Utilization Project's National Inpatient Sample (NIS) 2012 database and converted to 2015 US dollars. Savings were modeled for a hospital performing 245 cardiac surgeries annually, as identified as the average for hospitals in the NIS dataset. One-way sensitivity analysis and probabilistic sensitivity analysis were performed to test model robustness. RESULTS: The results suggest that if FLOSEAL is utilized in a hospital that performs 245 mixed cardiac surgery procedures annually, 11 major complications, 31 minor complications, nine surgical revisions, 79 blood product transfusions, and 260.3 h of cumulative operating time could be avoided. These improved outcomes correspond to a net annualized saving of $1,532,896. Cost savings remained consistent between $1.3m and $1.8m and between $911k and $2.4m, even after accounting for the uncertainty around clinical and cost inputs, in a one-way and probabilistic sensitivity analysis, respectively. CONCLUSIONS: Outcome differences associated with FLOSEAL vs SURGIFLO that were previously reported in a comparative effectiveness study may result in substantial cost savings for US hospitals.


Subject(s)
Blood Loss, Surgical/prevention & control , Cardiac Surgical Procedures/economics , Cardiac Surgical Procedures/methods , Hemostatics/economics , Blood Transfusion/economics , Blood Transfusion/statistics & numerical data , Cardiac Surgical Procedures/adverse effects , Cost-Benefit Analysis , Gelatin Sponge, Absorbable/economics , Humans , Models, Econometric , Operating Rooms/economics , Operative Time , Postoperative Complications/economics , Postoperative Complications/epidemiology , Reoperation/economics , Reoperation/statistics & numerical data , Retrospective Studies
12.
Eur Radiol ; 27(9): 3677-3686, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28124106

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate the feasibility and accuracy of dual-layer spectral detector CT (SDCT) for the quantification of clinically encountered gadolinium concentrations. METHODS: The cardiac chamber of an anthropomorphic thoracic phantom was equipped with 14 tubular inserts containing different gadolinium concentrations, ranging from 0 to 26.3 mg/mL (0.0, 0.1, 0.2, 0.4, 0.5, 1.0, 2.0, 3.0, 4.0, 5.1, 10.6, 15.7, 20.7 and 26.3 mg/mL). Images were acquired using a novel 64-detector row SDCT system at 120 and 140 kVp. Acquisitions were repeated five times to assess reproducibility. Regions of interest (ROIs) were drawn on three slices per insert. A spectral plot was extracted for every ROI and mean attenuation profiles were fitted to known attenuation profiles of water and pure gadolinium using in-house-developed software to calculate gadolinium concentrations. RESULTS: At both 120 and 140 kVp, excellent correlations between scan repetitions and true and measured gadolinium concentrations were found (R > 0.99, P < 0.001; ICCs > 0.99, CI 0.99-1.00). Relative mean measurement errors stayed below 10% down to 2.0 mg/mL true gadolinium concentration at 120 kVp and below 5% down to 1.0 mg/mL true gadolinium concentration at 140 kVp. CONCLUSION: SDCT allows for accurate quantification of gadolinium at both 120 and 140 kVp. Lowest measurement errors were found for 140 kVp acquisitions. KEY POINTS: • Gadolinium quantification may be useful in patients with contraindication to iodine. • Dual-layer spectral detector CT allows for overall accurate quantification of gadolinium. • Interscan variability of gadolinium quantification using SDCT material decomposition is excellent.


Subject(s)
Gadolinium/analysis , Phantoms, Imaging , Tomography, X-Ray Computed/methods , Feasibility Studies , Heart , Reproducibility of Results
13.
J Comput Assist Tomogr ; 41(1): 148-155, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27560017

ABSTRACT

OBJECTIVE: This study aimed to determine the lowest radiation dose and iterative reconstruction level(s) at which computed tomography (CT)-based quantification of aortic valve calcification (AVC) and thoracic aortic calcification (TAC) is still feasible. METHODS: Twenty-eight patients underwent a cardiac CT and 20 patients a chest CT at 4 different dose levels (routine dose and approximately 40%, 60%, and 80% reduced dose). Data were reconstructed with filtered back projection, 3 iDose levels, and 3 iterative model-based reconstruction levels. Two observers scored subjective image quality. The AVC and TAC were quantified using mass and compared to the reference scan (routine dose reconstructed with filtered back projection). RESULTS: In cardiac CT at 0.35 mSv (60% reduced), all scans reconstructed with iDose (all levels) were diagnostic, calcification detection errors occurred in only 1 patient, and there were no significant differences in mass scores compared to the reference scan. Similar results were found for chest CT at 0.48 mSv (75% reduced) with iDose levels 4 and 6 and iterative model reconstruction levels 1 and 2. CONCLUSIONS: Iterative reconstruction enables AVC and TAC quantification on CT at submillisievert dose.


Subject(s)
Aorta, Thoracic/diagnostic imaging , Aortic Valve/diagnostic imaging , Radiation Exposure/prevention & control , Radiation Protection/methods , Tomography, X-Ray Computed/methods , Vascular Calcification/diagnostic imaging , Aged , Female , Humans , Male , Middle Aged , Radiation Dosage , Radiation Exposure/analysis , Radiographic Image Interpretation, Computer-Assisted/methods , Reproducibility of Results , Sensitivity and Specificity
14.
Eur J Radiol ; 85(11): 2152-2159, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27776671

ABSTRACT

PURPOSE: To determine the effect of model-based iterative reconstruction (IR) on coronary calcium quantification using different submillisievert CT acquisition protocols. METHODS: Twenty-eight patients received a clinically indicated non contrast-enhanced cardiac CT. After the routine dose acquisition, low-dose acquisitions were performed with 60%, 40% and 20% of the routine dose mAs. Images were reconstructed with filtered back projection (FBP), hybrid IR (HIR) and model-based IR (MIR) and Agatston scores, calcium volumes and calcium mass scores were determined. RESULTS: Effective dose was 0.9, 0.5, 0.4 and 0.2mSv, respectively. At 0.5 and 0.4mSv, differences in Agatston scores with both HIR and MIR compared to FBP at routine dose were small (-0.1 to -2.9%), while at 0.2mSv, differences in Agatston scores of -12.6 to -14.6% occurred. Reclassification of risk category at reduced dose levels was more frequent with MIR (21-25%) than with HIR (18%). CONCLUSIONS: Radiation dose for coronary calcium scoring can be safely reduced to 0.4mSv using both HIR and MIR, while FBP is not feasible at these dose levels due to excessive noise. Further dose reduction can lead to an underestimation in Agatston score and subsequent reclassification to lower risk categories. Mass scores were unaffected by dose reductions.


Subject(s)
Calcinosis/diagnostic imaging , Coronary Angiography , Coronary Artery Disease/diagnostic imaging , Tomography, X-Ray Computed , Algorithms , Calcinosis/pathology , Coronary Angiography/methods , Coronary Artery Disease/pathology , Female , Humans , Male , Middle Aged , Netherlands/epidemiology , Phantoms, Imaging , Prospective Studies , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted/methods , Reproducibility of Results , Tomography, X-Ray Computed/methods
15.
J Comput Assist Tomogr ; 40(4): 578-83, 2016.
Article in English | MEDLINE | ID: mdl-27096400

ABSTRACT

OBJECTIVE: The aim of the study was to determine the effects of dose reduction and iterative reconstruction (IR) on pulmonary nodule volumetry. METHODS: In this prospective study, 25 patients scheduled for follow-up of pulmonary nodules were included. Computed tomography acquisitions were acquired at 4 dose levels with a median of 2.1, 1.2, 0.8, and 0.6 mSv. Data were reconstructed with filtered back projection (FBP), hybrid IR, and model-based IR. Volumetry was performed using semiautomatic software. RESULTS: At the highest dose level, more than 91% (34/37) of the nodules could be segmented, and at the lowest dose level, this was more than 83%. Thirty-three nodules were included for further analysis. Filtered back projection and hybrid IR did not lead to significant differences, whereas model-based IR resulted in lower volume measurements with a maximum difference of -11% compared with FBP at routine dose. CONCLUSIONS: Pulmonary nodule volumetry can be accurately performed at a submillisievert dose with both FBP and hybrid IR.


Subject(s)
Imaging, Three-Dimensional/methods , Lung Neoplasms/diagnostic imaging , Radiation Exposure/analysis , Radiation Exposure/prevention & control , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Aged , Female , Humans , Male , Middle Aged , Models, Biological , Models, Statistical , Radiation Dosage , Radiation Protection/methods , Radiographic Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity , Tumor Burden
16.
Eur J Radiol ; 85(2): 346-51, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26781139

ABSTRACT

OBJECTIVE: To evaluate the effect of radiation dose reduction and iterative reconstruction (IR) on the performance of computer-aided detection (CAD) for pulmonary nodules. METHODS: In this prospective study twenty-five patients were included who were scanned for pulmonary nodule follow-up. Image acquisition was performed at routine dose and three reduced dose levels in a single session by decreasing mAs-values with 45%, 60% and 75%. Tube voltage was fixed at 120 kVp for patients ≥ 80 kg and 100 kVp for patients < 80 kg. Data were reconstructed with filtered back projection (FBP), iDose(4) (levels 1,4,6) and IMR (levels 1-3). All noncalcified solid pulmonary nodules ≥ 4 mm identified by two radiologists in consensus served as the reference standard. Subsequently, nodule volume was measured with CAD software and compared to the reference consensus. The numbers of true-positives, false-positives and missed pulmonary nodules were evaluated as well as the sensitivity. RESULTS: Median effective radiation dose was 2.2 mSv at routine dose and 1.2, 0.9 and 0.6 mSv at respectively 45%, 60% and 75% reduced dose. A total of 28 pulmonary nodules were included. With FBP at routine dose, 89% (25/28) of the nodules were correctly identified by CAD. This was similar at reduced dose levels with FBP, iDose(4) and IMR. CAD resulted in a median number of false-positives findings of 11 per scan with FBP at routine dose (93% of the CAD marks) increasing to 15 per scan with iDose(4) (95% of the CAD marks) and 26 per scan (96% of the CAD marks) with IMR at the lowest dose level. CONCLUSION: CAD can identify pulmonary nodules at submillisievert dose levels with FBP, hybrid and model-based IR. However, the number of false-positive findings increased using hybrid and especially model-based IR at submillisievert dose while dose reduction did not affect the number of false-positives with FBP.


Subject(s)
Image Processing, Computer-Assisted/methods , Multiple Pulmonary Nodules/diagnostic imaging , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Aged , Algorithms , Female , Humans , Male , Middle Aged , Prospective Studies , Sensitivity and Specificity , Software
17.
Br J Radiol ; 89(1058): 20150068, 2016.
Article in English | MEDLINE | ID: mdl-26562096

ABSTRACT

OBJECTIVE: To investigate the achievable radiation dose reduction for coronary CT angiography (CCTA) with iterative reconstruction (IR) in adults and the effects on image quality. METHODS: PubMed and EMBASE were searched, and original articles concerning IR for CCTA in adults using prospective electrocardiogram triggering were included. Primary outcome was the effective dose using filtered back projection (FBP) and IR. Secondary outcome was the effect of IR on objective and subjective image quality. RESULTS: The search yielded 1616 unique articles, of which 10 studies (1042 patients) were included. The pooled routine effective dose with FBP was 4.2 mSv [95% confidence interval (CI) 3.5-5.0]. A dose reduction of 48% to a pooled effective dose of 2.2 mSv (95% CI 1.3-3.1) using IR was reported. Noise, contrast-to-noise ratio and subjective image quality were equal or improved in all but one study, whereas signal-to-noise ratio was decreased in two studies with IR at reduced dose. CONCLUSION: IR allows for CCTA acquisition with an effective dose of 2.2 mSv with preserved objective and subjective image quality.


Subject(s)
Cardiac-Gated Imaging Techniques/methods , Coronary Angiography/methods , Radiation Dosage , Tomography, X-Ray Computed/methods , Humans , Radiographic Image Interpretation, Computer-Assisted , Signal-To-Noise Ratio
18.
J Cardiovasc Comput Tomogr ; 10(1): 69-75, 2016.
Article in English | MEDLINE | ID: mdl-26342405

ABSTRACT

OBJECTIVE: To assess the maximally achievable computed tomography (CT) dose reduction for coronary artery calcium (CAC) scoring with iterative reconstruction (IR) by using phantom-experiments and a systematical within-patient study. METHODS: Our local institutional review-board approved this study and informed consent was obtained from all participants. A phantom and patient study were conducted with 30 patients (23 men, median age 55.0 (52.0-56.0) years) who underwent 256-slice electrocardiogram-triggered CAC-scoring at four dose levels (routine, 60%, 40%, and 20%-dose) in a single session. Tube-voltage was 120 kVp, tube-current was lowered to achieve stated dose levels. Data were reconstructed with filtered back-projection (FBP) and three IR levels. Agatston, volume and mass scores were determined with validated software and compared using Wilcoxon signed ranks-tests. Subsequently, patient reclassification was analyzed. RESULTS: The phantom study showed that Agatston scores remained nearly stable with FBP between routine-dose and 40%-dose and increased substantially at lower dose. Twenty-three patients (77%) had coronary calcifications. For Agatston scoring, one 40%-dose and six 20%-dose FBP reconstructions were not interpretable due to noise. In contrast, with IR all reconstructions were interpretable. Median Agatston scores increased with FBP from 26.1 (5.2-192.2) at routine-dose to 60.5 (11.6-251.7) at 20% dose. However, IR lowered Agatston scores to 22.9 (5.9-195.5) at 20%-dose and strong IR (level 7) with Agatston reclassifications in 15%. CONCLUSION: IR allows for CAC-scoring radiation dose reductions of up to 80% resulting in effective doses between 0.15 and 0.18 mSv. At these dose-levels, reclassification-rates remain within 15% if the highest IR-level is applied.


Subject(s)
Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Radiation Exposure/prevention & control , Radiographic Image Enhancement/methods , Tomography, X-Ray Computed/methods , Vascular Calcification/diagnostic imaging , Algorithms , Dose-Response Relationship, Radiation , Female , Humans , Male , Middle Aged , Radiation Dosage , Radiation Exposure/analysis , Radiation Protection/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Reproducibility of Results , Sensitivity and Specificity , Signal-To-Noise Ratio
19.
Eur J Radiol ; 84(11): 2307-13, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26212557

ABSTRACT

OBJECTIVES: Iterative reconstruction (IR) allows for dose reduction with maintained image quality in CT imaging. In this systematic review the reported effective dose reductions for chest CT and the effects on image quality are investigated. METHODS: A systematic search in PubMed and EMBASE was performed. Primary outcome was the reported local reference and reduced effective dose and secondary outcome was the image quality with IR. Both non contrast-enhanced and enhanced studies comparing reference dose with reduced dose were included. RESULTS: 24 studies were included. The median number of patients per study was 66 (range 23-200) with in total 1806 patients. The median reported local reference dose of contrast-enhanced chest CT with FBP was 2.6 (range 1.5-21.8) mSv. This decreased to 1.4 (range 0.4-7.3) mSv at reduced dose levels using IR. With non contrast-enhanced chest CT the dose decreased from 3.4 (range 0.7-7.8) mSv to 0.9 (range 0.1-4.5) mSv. Objective mage quality and diagnostic confidence and acceptability remained the same or improved with IR compared to FBP in most studies while data on diagnostic accuracy was limited. CONCLUSION: Radiation dose can be reduced to less than 2 mSv for contrast-enhanced chest CT and non contrast-enhanced chest CT is possible at a submillisievert dose using IR algorithms.


Subject(s)
Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted/methods , Radiography, Thoracic/methods , Tomography, X-Ray Computed/methods , Adult , Aged , Algorithms , Contrast Media , Female , Humans , Male , Middle Aged , Radiographic Image Enhancement
20.
AJR Am J Roentgenol ; 204(3): 645-53, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25714298

ABSTRACT

OBJECTIVE. Radiation exposure from CT examinations should be reduced to a minimum in children. Iterative reconstruction (IR) is a method to reduce image noise that can be used to improve CT image quality, thereby allowing radiation dose reduction. This article reviews the use of hybrid and model-based IRs in pediatric CT and discusses the possibilities, advantages, and disadvantages of IR in pediatric CT and the importance of radiation dose reduction for CT of children. CONCLUSION. IR is a promising and potentially highly valuable technique that can be used to substantially reduce the amount of radiation in pediatric imaging. Future research should determine the maximum achievable radiation dose reduction in pediatric CT that is possible without a loss of diagnostic image quality.


Subject(s)
Image Processing, Computer-Assisted/methods , Models, Theoretical , Radiation Dosage , Tomography, X-Ray Computed/methods , Child , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...