Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
Nat Neurosci ; 27(7): 1299-1308, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38773350

ABSTRACT

Does the brain track how fast our blood glucose is changing? Knowing such a rate of change would enable the prediction of an upcoming state and a timelier response to this new state. Hypothalamic arousal-orchestrating hypocretin/orexin neurons (HONs) have been proposed to be glucose sensors, yet whether they track glucose concentration (proportional tracking) or rate of change (derivative tracking) is unknown. Using simultaneous recordings of HONs and blood glucose in behaving male mice, we found that maximal HON responses occur in considerable temporal anticipation (minutes) of glucose peaks due to derivative tracking. Analysis of >900 individual HONs revealed glucose tracking in most HONs (98%), with derivative and proportional trackers working in parallel, and many (65%) HONs multiplexed glucose and locomotion information. Finally, we found that HON activity is important for glucose-evoked locomotor suppression. These findings reveal a temporal dimension of brain glucose sensing and link neurobiological and algorithmic views of blood glucose perception in the brain's arousal orchestrators.


Subject(s)
Blood Glucose , Neurons , Orexins , Animals , Orexins/metabolism , Blood Glucose/metabolism , Male , Mice , Neurons/physiology , Neurons/metabolism , Mice, Inbred C57BL , Locomotion/physiology , Arousal/physiology , Behavior, Animal/physiology
2.
Mol Metab ; 81: 101895, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340808

ABSTRACT

Peptide YY (PYY3-36) is a post-prandially released gut hormone with potent appetite-reducing activity, the mechanism of action of which is not fully understood. Unravelling how this system physiologically regulates food intake may help unlock its therapeutic potential, whilst minimising unwanted effects. Here we demonstrate that germline and post-natal targeted knockdown of the PYY3-36 preferring receptor (neuropeptide Y (NPY) Y2 receptor (Y2R)) in the afferent vagus nerve is required for the appetite inhibitory effects of physiologically-released PYY3-36, but not peripherally administered pharmacological doses. Post-natal knockdown of the Y2R results in a transient body weight phenotype that is not evident in the germline model. Loss of vagal Y2R signalling also results in altered meal patterning associated with accelerated gastric emptying. These results are important for the design of PYY-based anti-obesity agents.


Subject(s)
Gastrointestinal Hormones , Peptide YY , Peptide YY/physiology , Appetite/physiology , Vagus Nerve , Eating
3.
Front Endocrinol (Lausanne) ; 14: 1158287, 2023.
Article in English | MEDLINE | ID: mdl-37234803

ABSTRACT

Introduction: Oleoylethanolamide (OEA), an endogenous N-acylethanolamine acting as a gut-to-brain signal to control food intake and metabolism, has been attracting attention as a target for novel therapies against obesity and eating disorders. Numerous observations suggested that the OEA effects might be peripherally mediated, although they involve central pathways including noradrenergic, histaminergic and oxytocinergic systems of the brainstem and the hypothalamus. Whether these pathways are activated directly by OEA or whether they are downstream of afferent nerves is still highly debated. Some early studies suggested vagal afferent fibers as the main route, but our previous observations have contradicted this idea and led us to consider the blood circulation as an alternative way for OEA's central actions. Methods: To test this hypothesis, we first investigated the impact of subdiaphragmatic vagal deafferentation (SDA) on the OEA-induced activation of selected brain nuclei. Then, we analyzed the pattern of OEA distribution in plasma and brain at different time points after intraperitoneal administration in addition to measuring food intake. Results: Confirming and extending our previous findings that subdiaphragmatic vagal afferents are not necessary for the eating-inhibitory effect of exogenous OEA, our present results demonstrate that vagal sensory fibers are also not necessary for the neurochemical effects of OEA. Rather, within a few minutes after intraperitoneal administration, we found an increased concentration of intact OEA in different brain areas, associated with the inhibition of food intake. Conclusion: Our results support that systemic OEA rapidly reaches the brain via the circulation and inhibits eating by acting directly on selected brain nuclei.


Subject(s)
Brain , Eating , Eating/physiology , Brain/metabolism , Endocannabinoids/pharmacology , Endocannabinoids/metabolism , Oleic Acids/pharmacology , Oleic Acids/metabolism
4.
Food Funct ; 13(17): 9010-9020, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35942900

ABSTRACT

Lipid emulsions (LEs) with tailored digestibility have the potential to modulate satiation or act as delivery systems for lipophilic nutrients and drugs. The digestion of LEs is governed by their interfacial emulsifier layer which determines their gastric structuring and accessibility for lipases. A plethora of LEs that potentially modulate digestion have been proposed in recent years, however, in vivo validations of altered LE digestion remain scarce. Here, we report on the in vivo digestion and satiation of three novel LEs stabilized by whey protein isolate (WPI), thermo-gelling methylcellulose (MC), or cellulose nanocrystals (CNCs) in comparison to an extensively studied surfactant-stabilized LE. LE digestion and satiation were determined in terms of gastric emptying, postprandial plasma hormone and metabolite levels characteristic for lipid digestion, perceived hunger/fullness sensations, and postprandial food intake. No major variations in gastric fat emptying were observed despite distinct gastric structuring of the LEs. The plasma satiation hormone and metabolite response was fastest and highest for WPI-stabilized LEs, indicating a limited capability of proteins to prevent lipolysis due to fast hydrolysis under gastric conditions and displacement by lipases. MC-stabilized LEs show a similar gastric structuring as surfactant-stabilized LEs but slightly reduced hormone and metabolite responses, suggesting that thermo-gelling MC prevents lipase adsorption more effectively. Ultimately, CNC-stabilized LEs showed a drastic reduction (>70%) in plasma hormone and metabolite responses. This confirms the efficiency of particle (Pickering) stabilized LEs to prevent lipolysis proposed in literature based on in vitro experiments. Subjects reported more hunger and less fullness after consumption of LEs stabilized with MC and CNCs which were able to limit satiation responses. We do not find evidence for the widely postulated ileal brake, i.e. that delivery of undigested nutrients to the ileum triggers increased satiation. On the contrary, we find decreased satiation for LEs that are able to delay lipolysis. No differences in food intake were observed 5 h after LE consumption. In conclusion, LE interfacial design modulates in vivo digestion and satiation response in humans. In particular, Pickering LEs show extraordinary capability to prevent lipolysis and qualify as oral delivery systems for lipophilic nutrients and drugs.


Subject(s)
Digestion , Lipids , Cellulose/chemistry , Emulsions/chemistry , Hormones , Humans , Lipase/metabolism , Lipids/chemistry , Satiation , Surface-Active Agents/pharmacology
5.
Curr Biol ; 32(8): 1812-1821.e4, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35316652

ABSTRACT

Ingested nutrients are proposed to control mammalian behavior by modulating the activity of hypothalamic orexin/hypocretin neurons (HONs). Previous in vitro studies showed that nutrients ubiquitous in mammalian diets, such as non-essential amino acids (AAs) and glucose, modulate HONs in distinct ways. Glucose inhibits HONs, whereas non-essential (but not essential) AAs activate HONs. The latter effect is of particular interest because its purpose is unknown. Here, we show that ingestion of a dietary-relevant mix of non-essential AAs activates HONs and shifts behavior from eating to exploration. These effects persisted despite ablation of a key neural gut → brain communication pathway, the cholecystokinin-sensitive vagal afferents. The behavioral shift induced by the ingested non-essential AAs was recapitulated by targeted HON optostimulation and abolished in mice lacking HONs. Furthermore, lick microstructure analysis indicated that intragastric non-essential AAs and HON optostimulation each reduce the size, but not the frequency, of consumption bouts, thus implicating food palatability modulation as a mechanism for the eating suppression. Collectively, these results suggest that a key purpose of HON activation by ingested, non-essential AAs is to suppress eating and re-initiate food seeking. We propose and discuss possible evolutionary advantages of this, such as optimizing the limited stomach capacity for ingestion of essential nutrients.


Subject(s)
Brain , Hypothalamus , Amino Acids/metabolism , Animals , Brain/physiology , Eating/physiology , Glucose/metabolism , Hypothalamus/metabolism , Mammals , Mice , Neurons/physiology , Orexins/metabolism
6.
Diabetes Obes Metab ; 24(2): 268-280, 2022 02.
Article in English | MEDLINE | ID: mdl-34658116

ABSTRACT

Peripheral glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) are secreted from enteroendocrine cells, and their plasma concentrations increase in response to eating. While the satiating effect of gut-derived CCK on food-intake control is well documented, the effect of peripheral GLP-1 is less clear. There is evidence that native GLP-1 can inhibit food intake only in the fed state but not in the fasting state. We therefore hypothesized that other gut peptides released during a meal might influence the subsequent effect of endogenous GLP-1 and investigated whether CCK could do so. We found that intraperitoneal injection of CCK in food-restricted mice inhibited food intake during the first 30-minute segment of a 1-hour session of ad libitum chow intake and that mice compensated by increasing their intake during the second half of the session. Importantly, this compensatory behaviour was abolished by an intraperitoneal injection of GLP-1 administered following an intraperitoneal injection of CCK and prior to the 1-hour session. In vivo activation of the free fatty acid 1 (FFA1) receptor with orally administered TAK875 increased plasma CCK concentration and, consistent with the effect of exogenous CCK, we found that prior oral administration of TAK875 increased the eating inhibitory effect of peripherally administered GLP-1. To examine the role of the vagus nerve in this effect, we utilized a saporin-based lesioning procedure to selectively ablate the CCK receptor-expressing gastrointestinal vagal afferent neurones (VANs). We found that the combined anorectic effect of TAK875 and GLP-1 was significantly attenuated in the absence of CCK receptor expressing VANs. Taken together, our results indicate that endogenous CCK interacts with GLP-1 to promote satiation and that activation of the FFA1 receptor can initiate this interaction by stimulating the release of CCK.


Subject(s)
Cholecystokinin , Glucagon-Like Peptide 1 , Animals , Eating , Humans , Mice , Receptors, Cholecystokinin , Satiation/physiology , Vagus Nerve/physiology
7.
Int J Behav Med ; 28(5): 641-646, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33721233

ABSTRACT

BACKGROUND: Weight gain is common as women approach mid-life. Reduced levels of leptin, an anorexigenic hormone, may facilitate this. Studies in middle-aged women with obesity have shown that dysfunctional eating behaviour, such as restrained eating, is linked to lower leptin. Furthermore, states of low oestradiol signalling, as are found in post-menopause or anorexia nervosa, have been found to impact leptin levels. The aim of this study was to investigate, for the first time, how different aspects of dysfunctional eating, menopausal status, and a history of anorexia nervosa relate to leptin levels in normal-weight middle-aged women. METHODS: A total of N = 57 women were recruited. Thirty-one were post-menopausal, and 27 had a history of anorexia nervosa. Dysfunctional eating behaviour was measured by the Three-Factor Eating Questionnaire, which contains three subscales: susceptibility/responsiveness to hunger, restraint, and disinhibition. Body composition was assessed by bioelectrical impedance analysis. A fasting blood sample was obtained to determine leptin. RESULTS: Controlling for age, body mass index, and fat mass, susceptibility/responsiveness to hunger was positively associated with leptin (ß = 0.267, p = 0.031), whereas restrained eating (ß = - 0.183, p = 0.079) and a history of anorexia nervosa (ß = - 0.221, p = 0.059) were, by trend, negatively associated with leptin. Neither disinhibited eating nor menopausal status was related to leptin. CONCLUSIONS: Leptin may decline as a response to repeated states of a negative energy balance. A possible implication is that mid-life weight management should avoid extreme changes in eating behaviour and instead focus on the macronutrient composition of diet and physical activity. Further, longitudinal enquiries are warranted to investigate these relationships.

8.
eNeuro ; 8(1)2021.
Article in English | MEDLINE | ID: mdl-33495245

ABSTRACT

Vagal and spinal sensory endings in the wall of the hepatic portal and superior mesenteric veins (PMV) provide the brain with chemosensory information important for energy balance and other functions. To determine their medullary neuronal targets, we injected the transsynaptic anterograde viral tracer HSV-1 H129-772 (H129) into the PMV wall or left nodose ganglion (LNG) of male rats, followed by immunohistochemistry (IHC) and high-resolution imaging. We also determined the chemical phenotype of H129-infected neurons, and potential vagal and spinal axon terminal appositions in the dorsal motor nucleus of the vagus (DMX) and the nucleus of the solitary tract (NTS). PMV wall injections generated H129-infected neurons in both nodose ganglia and in thoracic dorsal root ganglia (DRGs). In the medulla, cholinergic preganglionic parasympathetic neurons in the DMX were virtually the only targets of chemosensory information from the PMV wall. H129-infected terminal appositions were identified on H129-infected somata and dendrites in the DMX, and on H129-infected DMX dendrites that extend into the NTS. Sensory transmission via vagal and possibly spinal routes from the PMV wall therefore reaches DMX neurons via axo-somatic appositions in the DMX and axo-dendritic appositions in the NTS. However, the dearth of H129-infected NTS neurons indicates that sensory information from the PMV wall terminates on DMX neurons without engaging NTS neurons. These previously underappreciated direct sensory routes into the DMX enable a vago-vagal and possibly spino-vagal reflexes that can directly influence visceral function.


Subject(s)
Mesenteric Veins , Nodose Ganglion , Animals , Male , Neurons , Rats , Solitary Nucleus , Vagus Nerve
9.
Cell Metab ; 33(3): 676-687.e5, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33450178

ABSTRACT

Food intake is tightly regulated by complex and coordinated gut-brain interactions. Nutrients rapidly modulate activity in key populations of hypothalamic neurons that regulate food intake, including hunger-sensitive agouti-related protein (AgRP)-expressing neurons. Because individual macronutrients engage specific receptors in the gut to communicate with the brain, we reasoned that macronutrients may utilize different pathways to reduce activity in AgRP neurons. Here, we revealed that AgRP neuron activity in hungry mice is inhibited by site-specific intestinal detection of different macronutrients. We showed that vagal gut-brain signaling is required for AgRP neuron inhibition by fat. In contrast, spinal gut-brain signaling relays the presence of intestinal glucose. Further, we identified glucose sensors in the intestine and hepatic portal vein that mediate glucose-dependent AgRP neuron inhibition. Therefore, distinct pathways are activated by individual macronutrients to inhibit AgRP neuron activity.


Subject(s)
Intestines/physiology , Neurons/metabolism , Nutrients/metabolism , Agouti-Related Protein/metabolism , Animals , Brain/drug effects , Brain/physiology , Dietary Fats/metabolism , Dietary Fats/pharmacology , Glucose/metabolism , Glucose/pharmacology , Intestinal Mucosa/metabolism , Intestines/drug effects , Mice , Mice, Inbred C57BL , Nutrients/pharmacology , Signal Transduction/drug effects , Sodium-Glucose Transporter 1/metabolism , Vagus Nerve/drug effects , Vagus Nerve/physiology
10.
Curr Biol ; 30(22): 4510-4518.e6, 2020 11 16.
Article in English | MEDLINE | ID: mdl-32946754

ABSTRACT

Vagal afferent neuron (VAN) signaling sends information from the gut to the brain and is fundamental in the control of feeding behavior and metabolism [1]. Recent findings reveal that VAN signaling also plays a critical role in cognitive processes, including affective motivational behaviors and hippocampus (HPC)-dependent memory [2-5]. VANs, located in nodose ganglia, express receptors for various gut-derived peptide signals; however, the function of these receptors with regard to feeding behavior, metabolism, and memory control is poorly understood. We hypothesized that VAN-mediated processes are influenced by ghrelin, a stomach-derived orexigenic hormone, via communication to its receptor (GHSR) expressed on gut-innervating VANs. To examine this hypothesis, rats received nodose ganglia injections of an adeno-associated virus (AAV) expressing short hairpin RNAs targeting GHSR (or a control AAV) for RNAi-mediated VAN-specific GHSR knockdown. Results reveal that VAN GHSR knockdown induced various feeding and metabolic disturbances, including increased meal frequency, impaired glucose tolerance, delayed gastric emptying, and increased body weight compared to controls. Additionally, VAN-specific GHSR knockdown impaired HPC-dependent contextual episodic memory and reduced HPC brain-derived neurotrophic factor expression, but did not affect anxiety-like behavior or general activity levels. A functional role for endogenous VAN GHSR signaling was further confirmed by results revealing that VAN signaling is required for the hyperphagic effects of ghrelin administered at dark onset, and that gut-restricted ghrelin-induced increases in VAN firing rate require intact VAN GHSR expression. Collective results reveal that VAN GHSR signaling is required for both normal feeding and metabolic function as well as HPC-dependent memory.


Subject(s)
Ghrelin/metabolism , Hippocampus/physiology , Nodose Ganglion/metabolism , Receptors, Ghrelin/metabolism , Afferent Pathways/physiology , Animals , Body Weight/physiology , Brain-Derived Neurotrophic Factor/metabolism , Feeding Behavior/physiology , Gastric Emptying/physiology , Gene Knockdown Techniques , Glucose/metabolism , Hunger/physiology , Male , Memory, Episodic , Mice , Models, Animal , Neurons/metabolism , Nodose Ganglion/cytology , Nodose Ganglion/surgery , Rats , Rats, Transgenic , Receptors, Ghrelin/genetics , Vagotomy
11.
12.
Nat Commun ; 11(1): 2080, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32350271

ABSTRACT

Excessive insulin signaling through the insulin receptor (IR) may play a role in the pathogenesis of diet-induced metabolic disease, including obesity and type 2 diabetes. Here we investigate whether heterozygous impairment of insulin receptor (IR) expression limited to peripheral, i.e. non-CNS, tissues of adult mice impacts the development of high-fat diet-induced metabolic deterioration. While exhibiting some features of insulin resistance, PerIRKO+/- mice display a hepatic energy deficit accompanied by induction of energy-sensing AMPK, mitochondrial biogenesis, PPARα, unexpectedly leading to protection from, and reversal of hepatic lipid accumulation (steatosis hepatis, NAFLD). Consistently, and unlike in control mice, the PPARα activator fenofibrate fails to further affect hepatic lipid accumulation in PerIRKO+/- mice. Taken together, and opposing previously established diabetogenic features of insulin resistance, incomplete impairment of insulin signaling may mimic central aspects of calorie restriction to limit hepatic lipid accumulation during conditions of metabolic stress.


Subject(s)
Diet, High-Fat/adverse effects , Fasting/metabolism , Fatty Liver/etiology , Fatty Liver/prevention & control , Receptor, Insulin/metabolism , Animals , Body Composition , Energy Metabolism , Feeding Behavior , Glucose/metabolism , Homeostasis , Insulin Resistance , Liver/metabolism , Liver/pathology , Male , Mice, Inbred C57BL , Mice, Knockout
13.
Cell Rep ; 30(6): 2028-2039.e4, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32049029

ABSTRACT

The vagus nerve conveys gastrointestinal cues to the brain to control eating behavior. In obesity, vagally mediated gut-brain signaling is disrupted. Here, we show that the cocaine- and amphetamine-regulated transcript (CART) is a neuropeptide synthesized proportional to the food consumed in vagal afferent neurons (VANs) of chow-fed rats. CART injection into the nucleus tractus solitarii (NTS), the site of vagal afferent central termination, reduces food intake. Conversely, blocking endogenous CART action in the NTS increases food intake in chow-fed rats, and this requires intact VANs. Viral-mediated Cartpt knockdown in VANs increases weight gain and daily food intake via larger meals and faster ingestion rate. In obese rats fed a high-fat, high-sugar diet, meal-induced CART synthesis in VANs is blunted and CART antibody fails to increase food intake. However, CART injection into the NTS retains its anorexigenic effect in obese rats. Restoring disrupted VAN CART signaling in obesity could be a promising therapeutic approach.


Subject(s)
Hyperphagia/genetics , Nerve Tissue Proteins/metabolism , Vagus Nerve/drug effects , Weight Gain/genetics , Animals , Humans , Male , Rats
14.
Front Nutr ; 6: 170, 2019.
Article in English | MEDLINE | ID: mdl-31781572

ABSTRACT

A better understanding of how dietary lipids are processed by the human body is necessary to allow for the control of satiation and energy intake by tailored lipid systems. To examine whether rats are a valid model of human dietary lipid processing and therefore useful for further mechanistic studies in this context, we tested in rats three lipid emulsions of different stability, which alter satiety responses in humans. Different sets of 15 adult male Sprague Dawley rats, equipped with gastric catheters alone or combined with hepatic portal vein (HPV) and vena cava (VC) catheters were maintained on a medium-fat diet and adapted to an 8 h deprivation/16 h feeding schedule. Experiments were performed in a randomized cross-over study design. After gastric infusion of the lipid emulsions, we assessed gastric emptying by the paracetamol absorption test and recorded in separate experiments food intake and plasma levels of gastrointestinal hormones and metabolites in the HPV. For an acid stable emulsion, slower gastric emptying and an enhanced release of satiating gastrointestinal (GI) hormones were observed and were associated with lower short-term energy intake in rats and less hunger in humans, respectively. The magnitude of hormonal responses was related to the acid stability and redispersibility of the emulsions and thus seems to depend on the availability of lipids for digestion. Plasma metabolite levels were unaffected by the emulsion induced changes in lipolysis. The results support that structured lipid systems are digested similarly in rats and humans. Thus unstable emulsions undergo the same intragastric destabilization in both species, i.e., increased droplet size and creaming. This work establishes the rat as a viable animal model for in vivo studies on the control of satiation and energy intake by tailored lipid systems.

15.
Diabetologia ; 62(11): 2094-2105, 2019 11.
Article in English | MEDLINE | ID: mdl-31309261

ABSTRACT

AIMS/HYPOTHESIS: In the context of diabetes, the health benefit of antioxidant treatment has been widely debated. In this study, we investigated the effect of antioxidant treatment during the development of insulin resistance and hyperphagia in obesity and partial lipodystrophy. METHODS: We studied the role of antioxidants in the regulation of insulin resistance using the tamoxifen-inducible fat-specific insulin receptor knockout (iFIRKO) mouse model, which allowed us to analyse the antioxidant's effect in a time-resolved manner. In addition, leptin-deficient ob/ob mice were used as a hyperphagic, chronically obese and diabetic mouse model to validate the beneficial effect of antioxidants on metabolism. RESULTS: Acute induction of insulin receptor knockout in adipocytes changed the substrate preference to fat before induction of a diabetic phenotype including hyperinsulinaemia and hyperglycaemia. In healthy chow-fed animals as well as in morbidly obese mice, this diabetic phase could be reversed within a few weeks. Furthermore, after the induction of insulin receptor knockout in mature adipocytes, iFIRKO mice were protected from subsequent obesity development through high-fat diet feeding. By genetic tracing we show that the persistent fat mass loss in mice after insulin receptor knockout in adipocytes is not caused by the depletion of adipocytes. Treatment of iFIRKO mice with antioxidants postponed and reduced hyperglycaemia by increasing insulin sensitivity. In ob/ob mice, antioxidants rescued both hyperglycaemia and hyperphagia. CONCLUSIONS/INTERPRETATION: We conclude that fat mass reduction through insulin resistance in adipocytes is not reversible. Furthermore, it seems unlikely that adipocytes undergo apoptosis during the process of extreme lipolysis, as a consequence of insulin resistance. Antioxidants have a beneficial health effect not only during the acute phase of diabetes development, but also in a temporary fashion once chronic obesity and diabetes have been established.


Subject(s)
Antioxidants/metabolism , Diabetes Mellitus/metabolism , Glucose/metabolism , Insulin Resistance , Obesity, Morbid/metabolism , Adipocytes/cytology , Adipocytes/metabolism , Adipose Tissue, Brown/metabolism , Animals , Blood Glucose/metabolism , Calorimetry , Disease Models, Animal , Homeostasis , Hyperinsulinism/metabolism , Hyperphagia/metabolism , Insulin/metabolism , Leptin/metabolism , Lipodystrophy , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity, Morbid/complications , Receptor, Insulin/genetics , Receptor, Insulin/metabolism
16.
Int J Obes (Lond) ; 43(12): 2394-2406, 2019 12.
Article in English | MEDLINE | ID: mdl-31270430

ABSTRACT

BACKGROUND/OBJECTIVES: The incidence of obesity and metabolic syndrome (MetS) has rapidly increased worldwide. Roux-en-Y gastric bypass (RYGB) achieves long-term weight loss and improves MetS-associated comorbidities. Using a mouse model with a humanized lipoprotein metabolism, we elucidated whether improvements in lipid and glucose metabolism after RYGB surgery are body weight loss-dependent or not. SUBJECTS/METHODS: Male ApoE*3Leiden.CETP (ApoE3L.CETP) mice fed Western type diet for 6 weeks underwent RYGB or Sham surgery. Sham groups were either fed ad libitum or were body weight-matched (BWm) to the RYGB mice to discriminate surgical effects from body weight loss-associated effects. Before and after surgery, plasma was collected to assess the metabolic profile, and glucose tolerance and insulin sensitivity were tested. Twenty days after surgery, mice were sacrificed, and liver was collected to assess metabolic, histological and global gene expression changes after surgery. RESULTS: RYGB induced a marked reduction in body weight, which was also achieved by severe food restriction in BWm mice, and total fat mass compared to Sham ad libitum mice (Sham AL). Total cholesterol, non-high-density lipoprotein cholesterol (non-HDL-C) and ceramide were strongly reduced 20 days after surgery in RYGB compared to BWm mice. Glucose tolerance and insulin sensitivity improved 13 days after surgery similarly in RYGB and BWm mice. Liver histology confirmed lipid reduction in RYGB and BWm mice while the transcriptomics data indicated altered genes expression in lipid metabolism. CONCLUSIONS: RYGB surgery improves glucose metabolism and greatly ameliorates lipid metabolism in part in a body weight-dependent manner. Given that ApoE3L.CETP mice were extensively studied to describe the MetS, and given that RYGB improved ceramide after surgery, our data confirmed the usefulness of ApoE3L.CETP mice after RYGB in deciphering the metabolic improvements to treat the MetS.


Subject(s)
Body Weight/physiology , Gastric Bypass , Lipid Metabolism/physiology , Weight Loss/physiology , Animals , Apolipoproteins E/genetics , Blood Glucose/metabolism , Disease Models, Animal , Eating/physiology , Liver/chemistry , Liver/physiology , Male , Metabolic Syndrome/physiopathology , Mice , Mice, Transgenic
17.
Cell Rep ; 27(8): 2399-2410.e6, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31116984

ABSTRACT

The melanocortin system is a brain circuit that influences energy balance by regulating energy intake and expenditure. In addition, the brain-melanocortin system controls adipose tissue metabolism to optimize fuel mobilization and storage. Specifically, increased brain-melanocortin signaling or negative energy balance promotes lipid mobilization by increasing sympathetic nervous system input to adipose tissue. In contrast, calorie-independent mechanisms favoring energy storage are less understood. Here, we demonstrate that reduction of brain-melanocortin signaling actively promotes fat mass gain by activating the lipogenic program and adipocyte and endothelial cell proliferation in white fat depots independently of caloric intake via efferent nerve fibers conveyed by the common hepatic branch of the vagus nerve. Those vagally regulated obesogenic signals also contribute to the fat mass gain following chronic high-fat diet feeding. These data reveal a physiological mechanism whereby the brain controls energy stores that may contribute to increased susceptibility to obesity.


Subject(s)
Adipose Tissue/metabolism , Brain/metabolism , Energy Intake , Melanocortins/metabolism , Vagus Nerve/metabolism , Adipose Tissue/cytology , Adipose Tissue, Brown/metabolism , Animals , Body Weight , Cell Proliferation , Diet, High-Fat , Liver/surgery , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Rats , Rats, Wistar , Receptor, Melanocortin, Type 4/deficiency , Receptor, Melanocortin, Type 4/genetics , Signal Transduction , Vagotomy
18.
J Affect Disord ; 252: 404-412, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31003109

ABSTRACT

BACKGROUND: There is growing evidence for a role of abnormal gut-brain signaling in disorders involving altered mood and affect, including depression. Studies using vagus nerve stimulation (VNS) suggest that the disruption of vagal afferent signaling may contribute to these abnormalities. To test this hypothesis, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on affective behaviors. METHODS: SDA- and Sham-operated male rats were subjected to several tests that are commonly used in preclinical rodent models to assess the presence of anhedonic behavior, namely the novel object-induced exploration test, the novelty-suppressed eating test, and the sucrose preference test. In addition, we compared SDA and Sham rats in a social interaction test and the forced swim test to assess sociability and behavioral despair, respectively. RESULTS: Compared to Sham controls, SDA rats consistently displayed signs of anhedonic behavior in all test settings used. SDA rats also showed increased immobility and reduced swimming in the forced swim test, whereas they did not differ from Sham controls with regards to social approach behavior. LIMITATIONS: This study was conducted in male rats only. Hence, possible sex-specific effects of SDA on affective behaviors remained unexamined. CONCLUSIONS: Our findings demonstrate that hedonic behavior and behavioral despair are subject to visceral modulation through abdominal vagal afferents. These data are compatible with preclinical models and clinical trials showing beneficial effects of VNS on depression-like and affective behaviors.


Subject(s)
Affect , Afferent Pathways , Mood Disorders/therapy , Vagus Nerve Stimulation , Vagus Nerve/physiology , Abdomen/innervation , Animals , Disease Models, Animal , Male , Mood Disorders/physiopathology , Rats , Rats, Sprague-Dawley , Swimming
19.
Mol Metab ; 23: 51-59, 2019 05.
Article in English | MEDLINE | ID: mdl-30905616

ABSTRACT

OBJECTIVE: Roux-en-Y gastric bypass (RYGB) surgery produces rapid and persistent reductions in plasma triglyceride (TG) levels associated with fewer cardiovascular events. The mechanisms of the reduction in systemic TG levels remain unclear. We hypothesized that RYGB reduces intestinal TG secretion via altered enterocyte lipid handling. METHODS: RYGB or Sham surgery was performed in diet-induced obese, insulin-resistant male Sprague-Dawley rats. First, we tested whether RYGB reduced test meal-induced TG levels in the intestinal lymph, a direct readout of enterocyte lipid secretion. Second, we examined whether RYGB modified TG enterocyte secretion at the single lipid level and in comparison to other lipid subclasses, applying mass spectrometry lipidomics to the intestinal lymph of RYGB and Sham rats (0-21 days after surgery). Third, we explored whether RYGB modulated the metabolic characteristics of primary enterocytes using transcriptional and functional assays relevant to TG absorption, reesterification, storage in lipid droplets, and oxidation. RESULTS: RYGB reduced overall postprandial TG concentrations compared to Sham surgery in plasma and intestinal lymph similarly. RYGB reduced lymphatic TG concentrations more than other lipid subclasses, and shifted the remaining TG pool towards long-chain, unsaturated species. In enterocytes of fasted RYGB rats, lipid uptake was transcriptionally (Fatp4, Fabp2, Cd36) and functionally reduced compared to Sham, whereas TG reesterification genes were upregulated. CONCLUSION: Our results show that RYGB substantially reduces intestinal TG secretion and modifies enterocyte lipid absorption and handling in rats. These changes likely contribute to the improvements in the plasma TG profile observed after RYGB in humans.


Subject(s)
Enterocytes/metabolism , Gastric Bypass/methods , Postprandial Period/physiology , Triglycerides/blood , Animals , Blood Glucose , Diglycerides/metabolism , Disease Models, Animal , Glucose Tolerance Test , Insulin Resistance , Intestinal Mucosa/metabolism , Lymph/metabolism , Male , Obesity/surgery , Rats , Rats, Sprague-Dawley
20.
Peptides ; 113: 22-34, 2019 03.
Article in English | MEDLINE | ID: mdl-30660763

ABSTRACT

Altered GLP-1 secretion from L cells has been implicated in the development of type 2 diabetes mellitus and its resolution following bariatric surgery. However, changes in L cell gene expression, which may form the basis for altered functionality after high fat diet (HFD) or bariatric surgery, have either not been investigated or have given conflicting results. We developed a gcg-DTR-eGFP reporter mouse to isolate ileal and colonic L cells from HFD fed insulin resistant mice and mice showing improved glucose tolerance following vertical sleeve gastrectomy (VSG). Transcriptomic sequencing and identification of genes differentially expressed in response to HFD or VSG revealed small changes with HFD, primarily in immune related genes, but no regulation following VSG. In contrast, large differences were observed between ileal and colonic L cells due to the differential expression of genes involved in nutrient transport and metabolism, reflecting to some extent the differences in the surrounding epithelium. We showed that, in line with the gene expression data, colonic and ileal L cells exhibit differing GLP-1 responses to nutrients (glucose and the gly-sar dipeptide) and hormones (vasopressin). Thus, we hypothesise that colonic and ileal L cells have different physiological roles, with ileal L cells contributing more to postprandial glucose homeostasis by responding to dietary nutrients and colonic cells responding more to non-dietary stimulants.


Subject(s)
Blood Glucose/metabolism , Colon/metabolism , Gastrectomy/adverse effects , Gene Expression Regulation , Glucagon-Like Peptide 1/metabolism , Ileum/metabolism , Animals , Bariatric Surgery , Diet, High-Fat , Homeostasis , Male , Mice , Postprandial Period , Sequence Analysis, RNA , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...