Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Immunity ; 57(1): 124-140.e7, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38157853

ABSTRACT

Natural killer (NK) cells are present in the circulation and can also be found residing in tissues, and these populations exhibit distinct developmental requirements and are thought to differ in terms of ontogeny. Here, we investigate whether circulating conventional NK (cNK) cells can develop into long-lived tissue-resident NK (trNK) cells following acute infections. We found that viral and bacterial infections of the skin triggered the recruitment of cNK cells and their differentiation into Tcf1hiCD69hi trNK cells that share transcriptional similarity with CD56brightTCF1hi NK cells in human tissues. Skin trNK cells arose from interferon (IFN)-γ-producing effector cells and required restricted expression of the transcriptional regulator Blimp1 to optimize Tcf1-dependent trNK cell formation. Upon secondary infection, trNK cells rapidly gained effector function and mediated an accelerated NK cell response. Thus, cNK cells redistribute and permanently position at sites of previous infection via a mechanism promoting tissue residency that is distinct from Hobit-dependent developmental paths of NK cells and ILC1 seeding tissues during ontogeny.


Subject(s)
Coinfection , Humans , Killer Cells, Natural/metabolism , Cell Differentiation
2.
Dev Cell ; 58(18): 1627-1642.e7, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37633271

ABSTRACT

Mammalian specification of mesoderm and definitive endoderm (DE) is instructed by the two related Tbx transcription factors (TFs) Eomesodermin (Eomes) and Brachyury sharing partially redundant functions. Gross differences in mutant embryonic phenotypes suggest specific functions of each TF. To date, the molecular details of separated lineage-specific gene regulation by Eomes and Brachyury remain poorly understood. Here, we combine mouse embryonic and stem-cell-based analyses to delineate the non-overlapping, lineage-specific transcriptional activities. On a genome-wide scale, binding of both TFs overlaps at promoters of target genes but shows specificity for distal enhancer regions that is conferred by differences in Tbx DNA-binding motifs. The unique binding to enhancer sites instructs the specification of anterior mesoderm (AM) and DE by Eomes and caudal mesoderm by Brachyury. Remarkably, EOMES antagonizes BRACHYURY gene regulatory functions in coexpressing cells during early gastrulation to ensure the proper sequence of early AM and DE lineage specification followed by posterior mesoderm derivatives.


Subject(s)
Gastrulation , T-Box Domain Proteins , Mice , Animals , Gastrulation/genetics , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Mesoderm/metabolism , Fetal Proteins/genetics , Fetal Proteins/metabolism , Gene Expression Regulation, Developmental , Mammals/metabolism
3.
medRxiv ; 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36993625

ABSTRACT

Background: Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below 30 years of age. Many monogenic forms have been discovered mainly due to comprehensive genetic testing like exome sequencing (ES). However, disease-causing variants in known disease-associated genes still only explain a proportion of cases. Aim of this study was to unravel the underlying molecular mechanism of syndromic CAKUT in two multiplex families with presumed autosomal recessive inheritance. Methods and Results: ES in the index individuals revealed two different rare homozygous variants in FOXD2, a transcription factor not previously implicated in CAKUT in humans: a frameshift in family 1 and a missense variant in family 2 with family segregation patterns consistent with autosomal-recessive inheritance. CRISPR/Cas9-derived Foxd2 knock-out (KO) mice presented with bilateral dilated renal pelvis accompanied by renal papilla atrophy while extrarenal features included mandibular, ophthalmologic, and behavioral anomalies, recapitulating the phenotype of humans with FOXD2 dysfunction. To study the pathomechanism of FOXD2-dysfunction-mediated developmental renal defects, in a complementary approach, we generated CRISPR/Cas9-mediated KO of Foxd2 in ureteric-bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important in renal/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a cell identity shift towards a stromal cell identity. Histology of Foxd2 KO mouse kidneys confirmed increased fibrosis. Further, GWAS data (genome-wide association studies) suggests that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Conclusions: In summary, our data implicate that FOXD2 dysfunction is a very rare cause of autosomal recessive syndromic CAKUT and suggest disturbances of the PAX2-WNT4 cell signaling axis contribute to this phenotype.

4.
Front Immunol ; 14: 1058267, 2023.
Article in English | MEDLINE | ID: mdl-36756120

ABSTRACT

The T-box transcription factors T-bet and Eomesodermin regulate type 1 immune responses in innate and adaptive lymphocytes. T-bet is widely expressed in the immune system but was initially identified as the lineage-specifying transcription factor of Th1 CD4+ T cells, where it governs expression of the signature cytokine IFN- γ and represses alternative cell fates like Th2 and Th17. T-bet's paralog Eomes is less abundantly expressed and Eomes+ CD4+ T cells are mostly found in the context of persistent antigen exposure, like bone marrow transplantation, chronic infection or inflammation as well as malignant disorders. However, it has remained unresolved whether Eomes executes similar transcriptional activities as T-bet in CD4+ T cells. Here we use a novel genetic approach to show that Eomes expression in CD4+ T cells drives a distinct transcriptional program that shows only partial overlap with T-bet. We found that Eomes is sufficient to induce the expression of the immunoregulatory cytokine IL-10 and, together with T-bet, promotes a cytotoxic effector profile, including Prf1, Gzmb, Gzmk, Nkg7 and Ccl5, while repressing alternative cell fates. Our results demonstrate that Eomes+ CD4+ T cells, which are often found in the context of chronic antigen stimulation, are likely to be a unique CD4+ T cell subset that limits inflammation and immunopathology as well as eliminates antigen-presenting and malignant cells.


Subject(s)
Antineoplastic Agents , Interleukin-10 , Mice , Animals , Interleukin-10/genetics , Interferon-gamma/metabolism , T-Lymphocyte Subsets , Cytokines , Th17 Cells , Inflammation , T-Box Domain Proteins/genetics , Membrane Proteins
5.
Development ; 149(22)2022 11 15.
Article in English | MEDLINE | ID: mdl-36326003

ABSTRACT

Stem cell-derived three-dimensional (3D) gastruloids show a remarkable capacity of self-organisation and recapitulate many aspects of gastrulation stage mammalian development. Gastruloids can be rapidly generated and offer several experimental advantages, such as scalability, observability and accessibility for manipulation. Here, we present approaches to further expand the experimental potency of murine 3D gastruloids by using functional genetics in mouse embryonic stem cells (mESCs) to generate chimeric gastruloids. In chimeric gastruloids, fluorescently labelled cells of different genotypes harbouring inducible gene expression or loss-of-function alleles are combined with wild-type cells. We showcase this experimental approach in chimeric gastruloids of mESCs carrying homozygous deletions of the Tbx transcription factor brachyury or inducible expression of Eomes. Resulting chimeric gastruloids recapitulate reported Eomes and brachyury functions, such as instructing cardiac fate and promoting posterior axial extension, respectively. Additionally, chimeric gastruloids revealed previously unrecognised phenotypes, such as the tissue sorting preference of brachyury deficient cells to endoderm and the cell non-autonomous effects of brachyury deficiency on Wnt3a patterning along the embryonic axis, demonstrating some of the advantages of chimeric gastruloids as an efficient tool for studies of mammalian gastrulation.


Subject(s)
Gastrulation , Mammals , Animals , Mice , Endoderm , Mouse Embryonic Stem Cells , Alleles
6.
Front Genet ; 13: 861236, 2022.
Article in English | MEDLINE | ID: mdl-35547246

ABSTRACT

Laterality defects are defined by the perturbed left-right arrangement of organs in the body, occurring in a syndromal or isolated fashion. In humans, primary ciliary dyskinesia (PCD) is a frequent underlying condition of defective left-right patterning, where ciliary motility defects also result in reduced airway clearance, frequent respiratory infections, and infertility. Non-motile cilia dysfunction and dysfunction of non-ciliary genes can also result in disturbances of the left-right body axis. Despite long-lasting genetic research, identification of gene mutations responsible for left-right patterning has remained surprisingly low. Here, we used whole-exome sequencing with Copy Number Variation (CNV) analysis to delineate the underlying molecular cause in 35 mainly consanguineous families with laterality defects. We identified causative gene variants in 14 families with a majority of mutations detected in genes previously associated with PCD, including two small homozygous CNVs. None of the patients were previously clinically diagnosed with PCD, underlining the importance of genetic diagnostics for PCD diagnosis and adequate clinical management. Identified variants in non-PCD-associated genes included variants in PKD1L1 and PIFO, suggesting that dysfunction of these genes results in laterality defects in humans. Furthermore, we detected candidate variants in GJA1 and ACVR2B possibly associated with situs inversus. The low mutation detection rate of this study, in line with other previously published studies, points toward the possibility of non-coding genetic variants, putative genetic mosaicism, epigenetic, or environmental effects promoting laterality defects.

7.
Front Cell Neurosci ; 16: 826590, 2022.
Article in English | MEDLINE | ID: mdl-35401124

ABSTRACT

Retinal ganglion cells expressing the photopigment melanopsin are intrinsically photosensitive (ipRGCs). ipRGCs regulate subconscious non-image-forming behaviors such as circadian rhythms, pupil dilation, and light-mediated mood. Previously, we and others showed that the transcription factor Tbr2 (EOMES) is required during retinal development for the formation of ipRGCs. Tbr2 is also expressed in the adult retina leading to the hypothesis that it plays a role in adult ipRGC function. To test this, we removed Tbr2 in adult mice. We found that this results in the loss of melanopsin expression in ipRGCs but does not lead to cell death or morphological changes to their dendritic or axonal termination patterns. Additionally, we found ectopic expression of Tbr2 in conventional RGCs does not induce melanopsin expression but can increase melanopsin expression in existing ipRGCs. An interesting feature of ipRGCs is their superior survival relative to conventional RGCs after an optic nerve injury. We find that loss of Tbr2 decreases the survival rate of ipRGCs after optic nerve damage suggesting that Tbr2 plays a role in ipRGC survival after injury. Lastly, we show that the GABAergic amacrine cell marker Meis2, is expressed in the majority of Tbr2-expressing displaced amacrine cells as well as in a subset of Tbr2-expressing RGCs. These findings demonstrate that Tbr2 is necessary but not sufficient for melanopsin expression, that Tbr2 is involved in ipRGC survival after optic nerve injury, and identify a marker for Tbr2-expressing displaced amacrine cells.

8.
Ultraschall Med ; 43(6): 608-613, 2022 Dec.
Article in English | MEDLINE | ID: mdl-33951737

ABSTRACT

PURPOSE: We sought to determine the diagnostic agreement between the revised ultrasonography approach by the German Society of Ultrasound in Medicine (DEGUM) and the established Society of Radiologists in Ultrasound (SRU) consensus criteria for the grading of carotid artery disease. MATERIALS AND METHODS: Post-hoc analysis of a prospective multicenter study, in which patients underwent ultrasonography and digital subtraction angiography (DSA) of carotid arteries for validation of the DEGUM approach. According to DEGUM and SRU ultrasonography criteria, carotid arteries were independently categorized into clinically relevant NASCET strata (normal, mild [1-49 %], moderate [50-69 %], severe [70-99 %], occlusion). On DSA, carotid artery findings according to NASCET were considered the reference standard. RESULTS: We analyzed 158 ultrasonography and DSA carotid artery pairs. There was substantial agreement between both ultrasonography approaches for severe (κw 0.76, CI95 %: 0.66-0.86), but only fair agreement for moderate (κw 0.38, CI95 %: 0.19-0.58) disease categories. Compared with DSA, both ultrasonography approaches were of equal sensitivity (79.7 % versus 79.7 %; p = 1.0) regarding the identification of severe stenosis, yet the DEGUM approach was more specific than the SRU approach (70.2 % versus 56.4 %, p = 0.0002). There was equality of accuracy parameters (p > 0.05) among both ultrasonography approaches for the other ranges of carotid artery disease. CONCLUSION: While the sensitivity was equivalent, false-positive identification of severe carotid artery stenosis appears to be more frequent when using the SRU ultrasonography approach than the revised multiparametric DEGUM approach.


Subject(s)
Carotid Artery Diseases , Carotid Stenosis , Humans , Carotid Artery, Internal/diagnostic imaging , Prospective Studies , Consensus , Carotid Stenosis/diagnostic imaging , Angiography, Digital Subtraction , Ultrasonography , Radiologists , Sensitivity and Specificity
9.
Dev Cell ; 56(23): 3276-3287.e8, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34741805

ABSTRACT

The process of implantation and the cellular interactions at the embryo-maternal interface are intrinsically difficult to analyze, as the implanting embryo is concealed by the uterine tissues. Therefore, the mechanisms mediating the interconnection of the embryo and the mother are poorly understood. Here, we established a 3D biomimetic culture environment that harbors the key features of the murine implantation niche. This culture system enabled direct analysis of trophoblast invasion and revealed the first embryonic interactions with the maternal vasculature. We found that implantation is mediated by the collective migration of penetrating strands of trophoblast giant cells, which acquire the expression of vascular receptors, ligands, and adhesion molecules, assembling a network for communication with the maternal blood vessels. In particular, Pdgf signaling cues promote the establishment of the heterologous contacts. Together, the biomimetic platform and our findings thereof elucidate the hidden dynamics of the early interactions at the implantation site.


Subject(s)
Blastocyst/metabolism , Blood Vessels/metabolism , Cell Communication , Embryo, Mammalian/metabolism , Embryonic Development , Maternal-Fetal Exchange , Trophoblasts/metabolism , Animals , Biomimetics , Blastocyst/cytology , Blood Vessels/cytology , Cell Culture Techniques , Cell Movement , Embryo Implantation , Embryo, Mammalian/cytology , Female , Giant Cells/cytology , Giant Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Pregnancy , Trophoblasts/cytology
10.
Leukemia ; 35(8): 2311-2324, 2021 08.
Article in English | MEDLINE | ID: mdl-33526861

ABSTRACT

The transcription factor eomesodermin (EOMES) promotes interleukin (IL)-10 expression in CD4+ T cells, which has been linked to immunosuppressive and cytotoxic activities. We detected cytotoxic, programmed cell death protein-1 (PD-1) and EOMES co-expressing CD4+ T cells in lymph nodes (LNs) of patients with chronic lymphocytic leukemia (CLL) or diffuse large B-cell lymphoma. Transcriptome and flow cytometry analyses revealed that EOMES does not only drive IL-10 expression, but rather controls a unique transcriptional signature in CD4+ T cells, that is enriched in genes typical for T regulatory type 1 (TR1) cells. The TR1 cell identity of these CD4+ T cells was supported by their expression of interferon gamma and IL-10, as well as inhibitory receptors including PD-1. TR1 cells with cytotoxic capacity accumulate also in Eµ-TCL1 mice that develop CLL-like disease. Whereas wild-type CD4+ T cells control TCL1 leukemia development after adoptive transfer in leukopenic Rag2-/- mice, EOMES-deficient CD4+ T cells failed to do so. We further show that TR1 cell-mediated control of TCL1 leukemia requires IL-10 receptor (IL-10R) signaling, as Il10rb-deficient CD4+ T cells showed impaired antileukemia activity. Altogether, our data demonstrate that EOMES is indispensable for the development of IL-10-expressing, cytotoxic TR1 cells, which accumulate in LNs of CLL patients and control TCL1 leukemia in mice in an IL-10R-dependent manner.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Interleukin-10/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/prevention & control , T-Box Domain Proteins/metabolism , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology , Animals , Cell Differentiation , Female , Gene Expression Regulation, Leukemic , Humans , Interferon-gamma , Interleukin-10/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Mice , Mice, Inbred C57BL , Prognosis , Signal Transduction , T-Box Domain Proteins/genetics , Transcriptome , Tumor Cells, Cultured
11.
Development ; 148(1)2021 01 07.
Article in English | MEDLINE | ID: mdl-33199445

ABSTRACT

Anterior mesoderm (AM) and definitive endoderm (DE) progenitors represent the earliest embryonic cell types that are specified during germ layer formation at the primitive streak (PS) of the mouse embryo. Genetic experiments indicate that both lineages segregate from Eomes-expressing progenitors in response to different Nodal signaling levels. However, the precise spatiotemporal pattern of the emergence of these cell types and molecular details of lineage segregation remain unexplored. We combined genetic fate labeling and imaging approaches with single-cell RNA sequencing (scRNA-seq) to follow the transcriptional identities and define lineage trajectories of Eomes-dependent cell types. Accordingly, all cells moving through the PS during the first day of gastrulation express Eomes AM and DE specification occurs before cells leave the PS from Eomes-positive progenitors in a distinct spatiotemporal pattern. ScRNA-seq analysis further suggested the immediate and complete separation of AM and DE lineages from Eomes-expressing cells as last common bipotential progenitor.


Subject(s)
Cell Lineage , Endoderm/cytology , Endoderm/metabolism , Gastrulation , Mesoderm/cytology , Mesoderm/metabolism , Alleles , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation , Epithelial Cells/metabolism , Gene Expression Regulation, Developmental , Germ Layers/cytology , Mice , Models, Biological , Primitive Streak/embryology , Primitive Streak/metabolism , Stem Cells/metabolism , T-Box Domain Proteins/metabolism , Time Factors , Transcription, Genetic
12.
PLoS Pathog ; 16(9): e1008870, 2020 09.
Article in English | MEDLINE | ID: mdl-32991634

ABSTRACT

The two T-box transcription factors T-bet and Eomesodermin (Eomes) are important regulators of cytotoxic lymphocytes (CTLs), such as activated CD8 T cells, which are essential in the fight against intracellular pathogens and tumors. Both transcription factors share a great degree of homology based on sequence analysis and as a result exert partial functional redundancy during viral infection. However, the actual degree of redundancy between T-bet and Eomes remains a matter of debate and is further confounded by their distinct spatiotemporal expression pattern in activated CD8 T cells. To directly investigate the functional overlap of these transcription factors, we generated a new mouse model in which Eomes expression is under the transcriptional control of the endogenous Tbx21 (encoding for T-bet) locus. Applying this model, we demonstrate that the induction of Eomes in lieu of T-bet cannot rescue T-bet deficiency in CD8 T cells during acute lymphocytic choriomeningitis virus (LCMV) infection. We found that the expression of Eomes instead of T-bet was not sufficient for early cell expansion or effector cell differentiation. Finally, we show that imposed expression of Eomes after acute viral infection promotes some features of exhaustion but must act in concert with other factors during chronic viral infection to establish all hallmarks of exhaustion. In summary, our results clearly underline the importance of T-bet in guiding canonical CTL development during acute viral infections.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/physiology , T-Box Domain Proteins/metabolism , Animals , Cell Proliferation , Cells, Cultured , Fetal Proteins/metabolism , Gene Expression Regulation/physiology , Interferon-gamma/metabolism , Mice, Transgenic
13.
Nat Commun ; 11(1): 1674, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32245946

ABSTRACT

Neurodevelopment requires precise regulation of gene expression, including post-transcriptional regulatory events such as alternative splicing and mRNA translation. However, translational regulation of specific isoforms during neurodevelopment and the mechanisms behind it remain unknown. Using RNA-seq analysis of mouse neocortical polysomes, here we report translationally repressed and derepressed mRNA isoforms during neocortical neurogenesis whose orthologs include risk genes for neurodevelopmental disorders. We demonstrate that the translation of distinct mRNA isoforms of the RNA binding protein (RBP), Elavl4, in radial glia progenitors and early neurons depends on its alternative 5' UTRs. Furthermore, 5' UTR-driven Elavl4 isoform-specific translation depends on upstream control by another RBP, Celf1. Celf1 regulation of Elavl4 translation dictates development of glutamatergic neurons. Our findings reveal a dynamic interplay between distinct RBPs and alternative 5' UTRs in neuronal development and underscore the risk of post-transcriptional dysregulation in co-occurring neurodevelopmental disorders.


Subject(s)
CELF1 Protein/metabolism , ELAV-Like Protein 4/genetics , Gene Expression Regulation, Developmental , Neocortex/growth & development , Neurogenesis/genetics , 5' Untranslated Regions/genetics , Alternative Splicing , Animals , Cell Line, Tumor , Female , Glutamic Acid/metabolism , Male , Mice , Mice, Transgenic , Neocortex/cytology , Neural Stem Cells/metabolism , Neuroglia/metabolism , Neurons/metabolism , Polyribosomes/metabolism , Primary Cell Culture , Protein Biosynthesis/genetics , RNA Isoforms/genetics , RNA-Seq
14.
Elife ; 92020 04 03.
Article in English | MEDLINE | ID: mdl-32238264

ABSTRACT

The hippocampal dentate gyrus (DG) is a unique brain region maintaining neural stem cells (NCSs) and neurogenesis into adulthood. We used multiphoton imaging to visualize genetically defined progenitor subpopulations in live slices across key stages of mouse DG development, testing decades old static models of DG formation with molecular identification, genetic-lineage tracing, and mutant analyses. We found novel progenitor migrations, timings, dynamic cell-cell interactions, signaling activities, and routes underlie mosaic DG formation. Intermediate progenitors (IPs, Tbr2+) pioneered migrations, supporting and guiding later emigrating NSCs (Sox9+) through multiple transient zones prior to converging at the nascent outer adult niche in a dynamic settling process, generating all prenatal and postnatal granule neurons in defined spatiotemporal order. IPs (Dll1+) extensively targeted contacts to mitotic NSCs (Notch active), revealing a substrate for cell-cell contact support during migrations, a developmental feature maintained in adults. Mouse DG formation shares conserved features of human neocortical expansion.


Subject(s)
Dentate Gyrus/embryology , Neural Stem Cells/physiology , Stem Cell Niche/physiology , Animals , Cell Communication , Cell Movement , Dentate Gyrus/cytology , Mice , Mice, Inbred C57BL , Neurogenesis/physiology , Receptors, Notch/physiology , Signal Transduction/physiology , T-Box Domain Proteins/physiology
16.
Mucosal Immunol ; 13(2): 257-270, 2020 03.
Article in English | MEDLINE | ID: mdl-31712600

ABSTRACT

Natural intraepithelial lymphocytes (IELs) are thymus-derived adaptive immune cells, which are important contributors to intestinal immune homeostasis. Similar to other innate-like T cells, they are induced in the thymus through high-avidity interaction that would otherwise lead to clonal deletion in conventional CD4 and CD8 T cells. By applying single-cell RNA-sequencing (scRNA-seq) on a heterogeneous population of thymic CD4-CD8αß-TCRαß+NK1.1- IEL precursors (NK1.1- IELPs), we define a developmental trajectory that can be tracked based on the sequential expression of CD122 and T-bet. Moreover, we identify the Id proteins Id2 and Id3 as a novel regulator of IELP development and show that all NK1.1- IELPs progress through a PD-1 stage that precedes the induction of T-bet. The transition from PD-1 to T-bet is regulated by the transcription factor C-Myc, which has far reaching effects on cell cycle, energy metabolism, and the translational machinery during IELP development. In summary, our results provide a high-resolution molecular framework for thymic IEL development of NK1.1- IELPs and deepen our understanding of this still elusive cell type.


Subject(s)
Intraepithelial Lymphocytes/immunology , Precursor Cells, T-Lymphoid/immunology , Proto-Oncogene Proteins c-myc/metabolism , T-Box Domain Proteins/metabolism , Thymus Gland/immunology , Animals , Antigens, Ly/metabolism , Cells, Cultured , Gene Expression Regulation , Immunity, Innate , Inhibitor of Differentiation Protein 2/genetics , Inhibitor of Differentiation Protein 2/metabolism , Inhibitor of Differentiation Proteins/genetics , Inhibitor of Differentiation Proteins/metabolism , Interleukin-2 Receptor beta Subunit/genetics , Interleukin-2 Receptor beta Subunit/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , NK Cell Lectin-Like Receptor Subfamily B/metabolism , Sequence Analysis, RNA , Single-Cell Analysis , T-Box Domain Proteins/genetics
17.
Nat Cell Biol ; 21(12): 1518-1531, 2019 12.
Article in English | MEDLINE | ID: mdl-31792383

ABSTRACT

The first lineage specification of pluripotent mouse epiblast segregates neuroectoderm (NE) from mesoderm and definitive endoderm (ME) by mechanisms that are not well understood. Here we demonstrate that the induction of ME gene programs critically relies on the T-box transcription factors Eomesodermin (also known as Eomes) and Brachyury, which concomitantly repress pluripotency and NE gene programs. Cells deficient in these T-box transcription factors retain pluripotency and differentiate to NE lineages despite the presence of ME-inducing signals transforming growth factor ß (TGF-ß)/Nodal and Wnt. Pluripotency and NE gene networks are additionally repressed by ME factors downstream of T-box factor induction, demonstrating a redundancy in program regulation to safeguard mutually exclusive lineage specification. Analyses of chromatin revealed that accessibility of ME enhancers depends on T-box factor binding, whereas NE enhancers are accessible and already activation primed at pluripotency. This asymmetry of the chromatin landscape thus explains the default differentiation of pluripotent cells to NE in the absence of ME induction that depends on activating and repressive functions of Eomes and Brachyury.


Subject(s)
Chromatin/genetics , Fetal Proteins/genetics , Germ Layers/physiology , Pluripotent Stem Cells/physiology , T-Box Domain Proteins/genetics , Animals , Cell Differentiation/genetics , Cell Line , Cell Separation/methods , Endoderm/physiology , Female , Gene Expression Regulation, Developmental/genetics , Male , Mice , Neural Plate/physiology , Transforming Growth Factor beta/genetics
18.
Elife ; 82019 11 18.
Article in English | MEDLINE | ID: mdl-31736464

ABSTRACT

The cerebral cortex contains multiple areas with distinctive cytoarchitectonic patterns, but the cellular mechanisms underlying the emergence of this diversity remain unclear. Here, we have investigated the neuronal output of individual progenitor cells in the developing mouse neocortex using a combination of methods that together circumvent the biases and limitations of individual approaches. Our experimental results indicate that progenitor cells generate pyramidal cell lineages with a wide range of sizes and laminar configurations. Mathematical modeling indicates that these outcomes are compatible with a stochastic model of cortical neurogenesis in which progenitor cells undergo a series of probabilistic decisions that lead to the specification of very heterogeneous progenies. Our findings support a mechanism for cortical neurogenesis whose flexibility would make it capable to generate the diverse cytoarchitectures that characterize distinct neocortical areas.


Subject(s)
Cell Differentiation , Neocortex/embryology , Neurogenesis , Pyramidal Cells/cytology , Pyramidal Cells/physiology , Stem Cells/physiology , Animals , Mice , Models, Theoretical
20.
Hum Mutat ; 40(3): 267-280, 2019 03.
Article in English | MEDLINE | ID: mdl-30520571

ABSTRACT

Next-generation sequencing (NGS) has been instrumental in solving the genetic basis of rare inherited diseases, especially neurodevelopmental syndromes. However, functional workup is essential for precise phenotype definition and to understand the underlying disease mechanisms. Using whole exome (WES) and whole genome sequencing (WGS) in four independent families with hypotonia, neurodevelopmental delay, facial dysmorphism, loss of white matter, and thinning of the corpus callosum, we identified four previously unreported homozygous truncating PPP1R21 alleles: c.347delT p.(Ile116Lysfs*25), c.2170_2171insGGTA p.(Ile724Argfs*8), c.1607dupT p.(Leu536Phefs*7), c.2063delA p.(Lys688Serfs*26) and found that PPP1R21 was absent in fibroblasts of an affected individual, supporting the allele's loss of function effect. PPP1R21 function had not been studied except that a large scale affinity proteomics approach suggested an interaction with PIBF1 defective in Joubert syndrome. Our co-immunoprecipitation studies did not confirm this but in contrast defined the localization of PPP1R21 to the early endosome. Consistent with the subcellular expression pattern and the clinical phenotype exhibiting features of storage diseases, we found patient fibroblasts exhibited a delay in clearance of transferrin-488 while uptake was normal. In summary, we delineate a novel neurodevelopmental syndrome caused by biallelic PPP1R21 loss of function variants, and suggest a role of PPP1R21 within the endosomal sorting process or endosome maturation pathway.


Subject(s)
Alleles , Endocytosis , Loss of Function Mutation/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Phosphoprotein Phosphatases/genetics , Adult , Child , Child, Preschool , Endosomes/metabolism , Endosomes/ultrastructure , Female , Fibroblasts/metabolism , Fibroblasts/ultrastructure , Homozygote , Humans , Infant , Infant, Newborn , Male , Myelin Sheath/metabolism , Myelin Sheath/ultrastructure , Pedigree , Phosphoprotein Phosphatases/chemistry , Syndrome , Transferrin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...