Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8: 14584, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28350383

ABSTRACT

The endocrine system dynamically controls tissue differentiation and homeostasis, but has not been studied using dynamic tissue culture paradigms. Here we show that a microfluidic system supports murine ovarian follicles to produce the human 28-day menstrual cycle hormone profile, which controls human female reproductive tract and peripheral tissue dynamics in single, dual and multiple unit microfluidic platforms (Solo-MFP, Duet-MFP and Quintet-MPF, respectively). These systems simulate the in vivo female reproductive tract and the endocrine loops between organ modules for the ovary, fallopian tube, uterus, cervix and liver, with a sustained circulating flow between all tissues. The reproductive tract tissues and peripheral organs integrated into a microfluidic platform, termed EVATAR, represents a powerful new in vitro tool that allows organ-organ integration of hormonal signalling as a phenocopy of menstrual cycle and pregnancy-like endocrine loops and has great potential to be used in drug discovery and toxicology studies.


Subject(s)
Menstrual Cycle , Microfluidic Analytical Techniques/instrumentation , Ovary/metabolism , Tissue Culture Techniques/instrumentation , Animals , Female , Humans , Mesothelin , Mice , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...