Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(7): e67583, 2013.
Article in English | MEDLINE | ID: mdl-23844038

ABSTRACT

Mitogen-Activated Protein Kinase (MAPK) pathway activation has been implicated in many types of human cancer. BRAF mutations that constitutively activate MAPK signalling and bypass the need for upstream stimuli occur with high prevalence in melanoma, colorectal carcinoma, ovarian cancer, papillary thyroid carcinoma, and cholangiocarcinoma. In this report we characterize the novel, potent, and selective BRAF inhibitor, dabrafenib (GSK2118436). Cellular inhibition of BRAF(V600E) kinase activity by dabrafenib resulted in decreased MEK and ERK phosphorylation and inhibition of cell proliferation through an initial G1 cell cycle arrest, followed by cell death. In a BRAF(V600E)-containing xenograft model of human melanoma, orally administered dabrafenib inhibited ERK activation, downregulated Ki67, and upregulated p27, leading to tumor growth inhibition. However, as reported for other BRAF inhibitors, dabrafenib also induced MAPK pathway activation in wild-type BRAF cells through CRAF (RAF1) signalling, potentially explaining the squamous cell carcinomas and keratoacanthomas arising in patients treated with BRAF inhibitors. In addressing this issue, we showed that concomitant administration of BRAF and MEK inhibitors abrogated paradoxical BRAF inhibitor-induced MAPK signalling in cells, reduced the occurrence of skin lesions in rats, and enhanced the inhibition of human tumor xenograft growth in mouse models. Taken together, our findings offer preclinical proof of concept for dabrafenib as a specific and highly efficacious BRAF inhibitor and provide evidence for its potential clinical benefits when used in combination with a MEK inhibitor.


Subject(s)
Melanoma/drug therapy , Melanoma/metabolism , Mitogen-Activated Protein Kinases/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor , Drug Evaluation, Preclinical , Enzyme Activation/drug effects , Female , Humans , Imidazoles/administration & dosage , Melanoma/pathology , Mice , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mutation , Oximes/administration & dosage , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Pyridones/administration & dosage , Pyrimidinones/administration & dosage , Signal Transduction/drug effects , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
2.
ACS Med Chem Lett ; 4(3): 358-62, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-24900673

ABSTRACT

Hyperactive signaling of the MAP kinase pathway resulting from the constitutively active B-Raf(V600E) mutated enzyme has been observed in a number of human tumors, including melanomas. Herein we report the discovery and biological evaluation of GSK2118436, a selective inhibitor of Raf kinases with potent in vitro activity in oncogenic B-Raf-driven melanoma and colorectal carcinoma cells and robust in vivo antitumor and pharmacodynamic activity in mouse models of B-Raf(V600E) human melanoma. GSK2118436 was identified as a development candidate, and early clinical results have shown significant activity in patients with B-Raf mutant melanoma.

4.
Proc Natl Acad Sci U S A ; 103(20): 7625-30, 2006 May 16.
Article in English | MEDLINE | ID: mdl-16684877

ABSTRACT

Heat shock protein (Hsp)90 is emerging as an important therapeutic target for the treatment of cancer. Two analogues of the Hsp90 inhibitor geldanamycin are currently in clinical trials. Geldanamycin (GA) and its analogues have been reported to bind purified Hsp90 with low micromolar potency, in stark contrast to their low nanomolar antiproliferative activity in cell culture and their potent antitumor activity in animal models. Several models have been proposed to account for the approximately 100-fold-greater potency in cell culture, including that GA analogues bind with greater affinity to a five-protein Hsp90 complex than to Hsp90 alone. We have determined that GA and the fluorescent analogue BODIPY-GA (BDGA) both demonstrate slow, tight binding to purified Hsp90. BDGA, used to characterize the kinetics of ligand-Hsp90 interactions, was found to bind Hsp90alpha with k(off) = 2.5 x 10(-3) min(-1), t(1/2) = 4.6 h, and Ki* = 10 nM. It was found that BDGA binds to a functional multiprotein Hsp90 complex with kinetics and affinity identical to that of Hsp90 alone. Also, BDGA binds to Hsp90 from multiple cell lysates in a time-dependent manner with similar kinetics. Therefore, our results indicate that the high potency of GA in cell culture and in vivo can be accounted for by its time-dependent, tight binding to Hsp90 alone. In the broader context, these studies highlight the essentiality of detailed biochemical characterization of drug-target interactions for the effective translation of in vitro pharmacology to cellular and in vivo efficacy.


Subject(s)
Antibiotics, Antineoplastic , HSP90 Heat-Shock Proteins , Quinones , Animals , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/metabolism , Benzoquinones , Boron Compounds/chemistry , Boron Compounds/metabolism , Cells, Cultured , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Humans , Lactams, Macrocyclic , Protein Binding , Quinones/chemistry , Quinones/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
5.
J Med Chem ; 47(24): 5894-911, 2004 Nov 18.
Article in English | MEDLINE | ID: mdl-15537345

ABSTRACT

Using a high-throughput screening strategy, a series of 1-aryl-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-4-ones was identified that inhibit the cyclin-dependent kinase (CDK) 4/cyclin D1 complex-mediated phosphorylation of a protein substrate with IC(50)s in the low micromolar range. On the basis of preliminary structure-activity relationships (SAR), a model was proposed in which these inhibitors occupy the ATP-binding site of the enzyme, forming critical hydrogen bonds to the same residue (Val96) to which the amino group in ATP is presumed to bind. X-ray diffraction studies on a later derivative bound to CDK2 support this binding mode. Iterative cycles of synthesis and screening lead to a novel series of potent, CDK2-selective 6-(arylmethyl)pyrazolopyrimidinones. Placement of a hydrogen-bond donor in the meta-position on the 6-arylmethyl group resulted in approximately 100-fold increases in CDK4 affinity, giving ligands that were equipotent inhibitors of CDK4 and CDK2. These compounds exhibit antiproliferative effects in the NCI HCT116 and other cell lines. The potency of these antiproliferative effects is enhanced in anilide derivatives and translates into tumor growth inhibition in a mouse xenograft model.


Subject(s)
Cyclin-Dependent Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pyrazoles/chemical synthesis , Pyrimidines/chemical synthesis , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , Cell Line, Tumor , Cells, Cultured , Crystallography, X-Ray , Cyclin D1/antagonists & inhibitors , Cyclin D1/metabolism , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinases/metabolism , Drug Screening Assays, Antitumor , Humans , Mice , Models, Molecular , Molecular Structure , Phosphorylation , Proto-Oncogene Proteins/metabolism , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Structure-Activity Relationship , Transplantation, Heterologous
6.
J Biol Chem ; 278(30): 27820-7, 2003 Jul 25.
Article in English | MEDLINE | ID: mdl-12738779

ABSTRACT

The MMP-11 proteinase, also known as stromelysin-3, probably plays an important role in human cancer because MMP-11 is frequently overexpressed in human tumors and MMP-11 levels affect tumorogenesis in mice. Unlike other MMPs, however, human MMP-11 does not cleave extracellular matrix proteins, such as collagen, laminin, fibronectin, and elastin. To help identify physiologic MMP-11 substrates, a phage display library was used to find peptide substrates for MMP-11. One class of peptides containing 26 members had the consensus sequence A(A/Q)(N/A) downward arrow (L/Y)(T/V/M/R)(R/K), where downward arrow denotes the cleavage site. This consensus sequence was similar to that for other MMPs, which also cleave peptides containing Ala in position 3, Ala in position 1, and Leu/Tyr in position 1', but differed from most other MMP substrates in that proline was rarely found in position 3 and Asn was frequently found in position 1. A second class of peptides containing four members had the consensus sequence G(G/A)E downward arrow LR. Although other MMPs also cleave peptides with these residues, other MMPs prefer proline at position 3 in this sequence. In vitro assays with MMP-11 and representative peptides from both classes yielded modest kcat/Km values relative to values found for other MMPs with their preferred peptide substrates. These reactions also showed that peptides with proline in position 3 were poor substrates for MMP-11. A structural basis for the lower kcat/Km values of human MMP-11, relative to other MMPs, and poor cleavage of position 3 proline substrates by MMP-11 is provided. Taken together, these findings explain why MMP-11 does not cleave most other MMP substrates and predict that MMP-11 has unique substrates that may contribute to human cancer.


Subject(s)
Metalloendopeptidases/chemistry , Peptide Library , Binding Sites , Crystallography, X-Ray , Dose-Response Relationship, Drug , Extracellular Matrix/metabolism , Genetic Vectors , Humans , Kinetics , Matrix Metalloproteinase 11 , Matrix Metalloproteinases, Membrane-Associated , Metalloendopeptidases/metabolism , Metalloendopeptidases/physiology , Models, Molecular , Neoplasms/metabolism , Peptides/chemistry , Proline/chemistry , Protein Binding , Protein Structure, Tertiary , Substrate Specificity
7.
Mutat Res ; 503(1-2): 21-35, 2002 Jun 19.
Article in English | MEDLINE | ID: mdl-12052500

ABSTRACT

Clastogenicity is frequently observed following treatment of mammalian cells with new chemical entities. This clastogenicity, unless proven otherwise, is assumed to result from the imperfect repair of DNA lesions produced from covalent chemical/DNA interaction. However, clastogenicity can also arise via other mechanisms such as non-covalent chemical intercalation into DNA resulting in poisoning of cellular DNA topoisomerase II (topo II) and stabilization of DNA double strand breaks. We have recently reported modifications to the V79 in vitro micronucleus assay which allow an indirect evaluation of both the intercalative and topoisomerase-interactive activities of chemical agents. In the present studies we have used these modified assays to further assess the validity of this approach in an evaluation of a number of intercalating and non-intercalating polycyclic compounds. It is shown that intercalating agents may be catalytic topo II inhibitors (e.g. chloroquine (CHL), tacrine (TAC), 9-aminoacridine (9AA), ethidium bromide (EB)) or topo II poisons (e.g. proflavine (PROF), auramine O (AUR) and curcumin (CURC)). Still other intercalators are shown to lack detectable topo II-interactions, (e.g. imipramine (IMP), quinacrine (QUIN), 2-aminoanthracene (AA), iminostilbene (IMN) and promethazine (PHE)). It is concluded that (1) the clastogenicity of three agents, PROF (a typical DNA intercalating agent), and AUR and CURC (both structurally atypical intercalating agents, with unknown clastogenic mechanisms), may be due to topo II poisoning; (2) other intercalating agents may either act as catalytic topo II inhibitors or exhibit no functional topo II interaction; (3) The use of these cell-based approaches may provide a logical first step in determining if unexpected clastogenicity associated with test article exposure is due to a topo II interaction.


Subject(s)
Intercalating Agents/toxicity , Micronucleus Tests , Mutagens/toxicity , Topoisomerase II Inhibitors , Animals , Anthracenes/toxicity , Catalysis , Cell Line , Cricetinae , Cricetulus , Imipramine/toxicity , Quinacrine/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...