Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Chemosphere ; 356: 141887, 2024 May.
Article in English | MEDLINE | ID: mdl-38583530

ABSTRACT

Microplastics pose risks to marine organisms through ingestion, entanglement, and as carriers of toxic additives and environmental pollutants. Plastic pre-production pellet leachates have been shown to affect the development of sea urchins and, to some extent, mussels. The extent of those developmental effects on other animal phyla remains unknown. Here, we test the toxicity of environmental mixed nurdle samples and new PVC pellets for the embryonic development or asexual reproduction by regeneration of animals from all the major animal superphyla (Lophotrochozoa, Ecdysozoa, Deuterostomia and Cnidaria). Our results show diverse, concentration-dependent impacts in all the species sampled for new pellets, and for molluscs and deuterostomes for environmental samples. Embryo axial formation, cell specification and, specially, morphogenesis seem to be the main processes affected by plastic leachate exposure. Our study serves as a proof of principle for the potentially catastrophic effects that increasing plastic concentrations in the oceans and other ecosystems can have across animal populations from all major animal superphyla.


Subject(s)
Invertebrates , Microplastics , Plastics , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Plastics/toxicity , Invertebrates/drug effects , Microplastics/toxicity , Embryonic Development/drug effects
2.
Nat Ecol Evol ; 8(6): 1140-1153, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38622362

ABSTRACT

Regulation of gene expression is arguably the main mechanism underlying the phenotypic diversity of tissues within and between species. Here we assembled an extensive transcriptomic dataset covering 8 tissues across 20 bilaterian species and performed analyses using a symmetric phylogeny that allowed the combined and parallel investigation of gene expression evolution between vertebrates and insects. We specifically focused on widely conserved ancestral genes, identifying strong cores of pan-bilaterian tissue-specific genes and even larger groups that diverged to define vertebrate and insect tissues. Systematic inferences of tissue-specificity gains and losses show that nearly half of all ancestral genes have been recruited into tissue-specific transcriptomes. This occurred during both ancient and, especially, recent bilaterian evolution, with several gains being associated with the emergence of unique phenotypes (for example, novel cell types). Such pervasive evolution of tissue specificity was linked to gene duplication coupled with expression specialization of one of the copies, revealing an unappreciated prolonged effect of whole-genome duplications on recent vertebrate evolution.


Subject(s)
Evolution, Molecular , Insecta , Vertebrates , Animals , Insecta/genetics , Vertebrates/genetics , Organ Specificity , Transcriptome , Phylogeny
3.
Front Neurosci ; 18: 1378520, 2024.
Article in English | MEDLINE | ID: mdl-38660219

ABSTRACT

Most sea urchin species are indirect developers, going through a larval stage called pluteus. The pluteus possesses its own nervous system, consisting mainly of the apical organ neurons (controlling metamorphosis and settlement) and ciliary band neurons (controlling swimming behavior and food collection). Additional neurons are located in various areas of the gut. In recent years, the molecular complexity of this apparently "simple" nervous system has become apparent, with at least 12 neuronal populations identified through scRNA-sequencing in the species Strongylocentrotus purpuratus. Among these, there is a cluster of neurosecretory cells that produce a thyrotropin-releasing hormone-type neuropeptide (TRHergic) and that are also photosensory (expressing a Go-Opsin). However, much less is known about the organization of the nervous system in other sea urchin species. The aim of this work was to thoroughly characterize the localization of the TRHergic cells from early pluteus to juvenile stages in the Mediterranean sea urchin species Paracentrotus lividus combining immunostaining and whole mount in situ hybridization. We also compared the localization of TRHergic cells in early plutei of two other sea urchin species, Arbacia lixula and Heliocidaris tuberculata. This work provides new information on the anatomy and development of the nervous system in sea urchins. Moreover, by comparing the molecular signature of the TRHergic cells in P. lividus and S. purpuratus, we have obtained new insights how TRH-type neuropeptide signaling evolved in relatively closely related species.

4.
Cell Rep ; 43(3): 113791, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38428420

ABSTRACT

The "ribbon," a structural arrangement in which Golgi stacks connect to each other, is considered to be restricted to vertebrate cells. Although ribbon disruption is linked to various human pathologies, its functional role in cellular processes remains unclear. In this study, we investigate the evolutionary origin of the Golgi ribbon. We observe a ribbon-like architecture in the cells of several metazoan taxa suggesting its early emergence in animal evolution predating the appearance of vertebrates. Supported by AlphaFold2 modeling, we propose that the evolution of Golgi reassembly and stacking protein (GRASP) binding by golgin tethers may have driven the joining of Golgi stacks resulting in the ribbon-like configuration. Additionally, we find that Golgi ribbon assembly is a shared developmental feature of deuterostomes, implying a role in embryogenesis. Overall, our study points to the functional significance of the Golgi ribbon beyond vertebrates and underscores the need for further investigations to unravel its elusive biological roles.


Subject(s)
Golgi Apparatus , Membrane Proteins , Animals , Humans , Membrane Proteins/metabolism , Golgi Apparatus/metabolism , Cytoskeleton/metabolism , HeLa Cells , Vertebrates
5.
Mar Pollut Bull ; 196: 115604, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37820449

ABSTRACT

Microplastic pollution is a major concern of our age, eliciting a range of effects on organisms including during embryonic development. Plastic preproduction pellets stunt the development of sea urchins through the leaching of teratogenic compounds. However, the effect of these leachates on adult sea urchins and their fertility is unknown. Here we investigate the effect of PVC leachates on the capacity to produce normal embryos, and demonstrate that adults kept in contaminated water still produce viable offspring. However, we observe a cumulative negative effect by continued exposure to highly polluted water: adult animals had lower counts and disturbed morphological profiles of immune cells, were under increased oxidative stress, and produced embryos less tolerant of contaminated environments. Our findings suggest that even in highly polluted areas, sea urchins are fertile, but that sublethal effects seen in the adults may lead to transgenerational effects that reduce developmental robustness of the embryos.


Subject(s)
Paracentrotus , Animals , Plastics/toxicity , Water Pollution , Embryonic Development , Immune System , Water
6.
Cells ; 12(17)2023 08 23.
Article in English | MEDLINE | ID: mdl-37681865

ABSTRACT

The ability to perceive and respond to light stimuli is fundamental not only for spatial vision but also to many other light-mediated interactions with the environment. In animals, light perception is performed by specific cells known as photoreceptors and, at molecular level, by a group of GPCRs known as opsins. Sea urchin larvae possess a group of photoreceptor cells (PRCs) deploying a Go-Opsin (Opsin3.2) which have been shown to share transcription factors and morphology with PRCs of the ciliary type, raising new questions related to how this sea urchin larva PRC is specified and whether it shares a common ancestor with ciliary PRCs or it if evolved independently through convergent evolution. To answer these questions, we combined immunohistochemistry and fluorescent in situ hybridization to investigate how the Opsin3.2 PRCs develop in the sea urchin Strongylocentrotus purpuratus larva. Subsequently, we applied single-cell transcriptomics to investigate the molecular signature of the Sp-Opsin3.2-expressing cells and show that they deploy an ancient regulatory program responsible for photoreceptors specification. Finally, we also discuss the possible functions of the Opsin3.2-positive cells based on their molecular fingerprint, and we suggest that they are involved in a variety of signaling pathways, including those entailing the thyrotropin-releasing hormone.


Subject(s)
Opsins , Transcriptome , Animals , Opsins/genetics , In Situ Hybridization, Fluorescence , Transcriptome/genetics , Larva/genetics , Sea Urchins/genetics , Photoreceptor Cells
7.
Cell Genom ; 3(4): 100295, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37082140

ABSTRACT

Sea urchins are emblematic models in developmental biology and display several characteristics that set them apart from other deuterostomes. To uncover the genomic cues that may underlie these specificities, we generated a chromosome-scale genome assembly for the sea urchin Paracentrotus lividus and an extensive gene expression and epigenetic profiles of its embryonic development. We found that, unlike vertebrates, sea urchins retained ancestral chromosomal linkages but underwent very fast intrachromosomal gene order mixing. We identified a burst of gene duplication in the echinoid lineage and showed that some of these expanded genes have been recruited in novel structures (water vascular system, Aristotle's lantern, and skeletogenic micromere lineage). Finally, we identified gene-regulatory modules conserved between sea urchins and chordates. Our results suggest that gene-regulatory networks controlling development can be conserved despite extensive gene order rearrangement.

8.
Intern Emerg Med ; 18(6): 1823-1830, 2023 09.
Article in English | MEDLINE | ID: mdl-37103762

ABSTRACT

Acute dyspnea (AD) is one of the main reasons for admission to the Emergency Department (ED). In the last years integrated ultrasound examination (IUE) of lung, heart and inferior vena cava (IVC) has become an extension of clinical examination for a fast differential diagnosis. The aim of present study is to assess the feasibility and diagnostic accuracy of E/A ratio for diagnosing acute heart failure (aHF) in patients with acute dyspnea. We included 92 patients presenting to the ED of CTO Hospital in Naples (Italy) for AD. All patients underwent IUE of lung-heart-IVC with a portable ultrasound device. Left ventricle diastolic function was assessed using pulse wave doppler at the tips of the mitral valve and E wave velocity and E/A ratio were recorded. The FINAL diagnosis was determined by two expert reviewers: acute HF or non-acute HF (non-aHF). We used 2 × 2 contingency tables to analyze sensitivity, specificity, positive predictive and negative predictive value of ultrasound parameters for the diagnosis of AD, comparing with the FINAL diagnosis. Lung ultrasound (LUS) showed high sensitivity, good specificity and accuracy in identification of patients with aHF. However, the highest accuracy was obtained by diastolic function parameters. The E/A ratio showed the highest diagnostic performance with an AUC for aHF of 0.93. In patients presenting with AD, E/A ratio is easy to obtain in a fast ultrasound protocol and showed an excellent accuracy for diagnosis of aHF.


Subject(s)
Dyspnea , Heart Failure , Humans , Dyspnea/diagnosis , Dyspnea/etiology , Heart Failure/diagnosis , Lung/diagnostic imaging , Ultrasonography , Emergency Service, Hospital , Mitral Valve , Acute Disease
9.
iScience ; 26(4): 106295, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36950121

ABSTRACT

Sea urchins can detect light and move in relation to luminous stimuli despite lacking eyes. They presumably detect light through photoreceptor cells distributed on their body surface. However, there is currently no mechanistic explanation of how these animals can process light to detect visual stimuli and produce oriented movement. Here, we present a model of decentralized vision in echinoderms that includes all known processing stages, from photoreceptor cells to radial nerve neurons to neurons contained in the oral nerve ring encircling the mouth of the animals. In the model, light stimuli captured by photoreceptor cells produce neural activity in the radial nerve neurons. In turn, neural activity in the radial nerves is integrated in the oral nerve ring to produce a profile of neural activity reaching spatially across several ambulacra. This neural activity is readout to produce a model of movement. The model captures previously published data on the behavior of sea urchin Diadema africanum probed with a variety of physical stimuli. The specific pattern of neural connections used in the model makes testable predictions on the properties of single neurons and aggregate neural behavior in Diadema africanum and other echinoderms, offering a potential understanding of the mechanism of visual orientation in these animals.

10.
Cells ; 12(2)2023 01 10.
Article in English | MEDLINE | ID: mdl-36672206

ABSTRACT

Thyroid Hormones (THs) are a class of signaling molecules produced by coupling iodine with tyrosine residues. In vertebrates, extensive data support their important role in a variety of processes such as metabolism, development and metamorphosis. On the other hand, in invertebrates, the synthesis and role of the THs have been, so far, poorly investigated, thus limiting our understanding of the function and evolution of this important animal signaling pathway. In sea urchins, for example, while several studies focused on the availability and function of external sources of iodotyrosines, preliminary evidence suggests that an endogenous TH pathway might be in place. Here, integrating available literature with an in silico analysis, various homologous genes of the vertebrate TH molecular toolkit have been identified in the sea urchin Strongylocentrotus purpuratus. They include genes involved in the synthesis (Sp-Pxdn), metabolism (Sp-Dios), transport (Sp-Ttrl, Sp-Mct7/8/10) and response (Sp-Thr, Sp-Rxr and Sp-Integrin αP) to thyroid hormones. To understand the cell type(s) involved in TH synthesis and/or response, we studied the spatial expression of the TH toolkit during urchin development. Exploiting single-cell transcriptomics data in conjunction with in situ hybridization and immunohistochemistry, we identified cell types that are potentially producing or responding to THs in the sea urchin. Finally, growing sea urchin embryos until the larva stage with and without a source of inorganic iodine, we provided evidence that iodine organification is important for larval skeleton growth.


Subject(s)
Iodine , Strongylocentrotus purpuratus , Animals , Strongylocentrotus purpuratus/genetics , Sea Urchins , Vertebrates/genetics , Larva/metabolism , Thyroid Hormones/metabolism , Iodine/metabolism
11.
Sci Total Environ ; 864: 160901, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36526210

ABSTRACT

Microplastics are now polluting all seas and, while studies have found numerous negative interactions between plastic pollution and marine animals, the effects on embryonic development are poorly understood. A potentially important source of developmental ecotoxicity comes from chemicals leached from plastic particles to the marine environment. Here we investigate the effects of leachates from new and beach-collected pellets on the embryonic and larval development of the sea urchin Strongylocentrotus purpuratus and demonstrate that exposure of developing embryos to these leachates elicits severe, consistent and treatment-specific developmental abnormalities including radialisation of the embryo and malformation of the skeleton, neural and immune cells. Using a multi-omics approach we define the developmental pathways disturbed upon exposure to PVC leachates and provide a mechanistic view that pinpoints cellular redox stress and energy production as drivers of phenotypic abnormalities following exposure to PVC leachates. Analysis of leachates identified high concentrations of zinc that are the likely cause of these observed defects. Our findings point to clear and specific detrimental effects of marine plastic pollution on the development of echinoderms, demonstrating that chemicals leached from plastic particles into sea water can produce strong developmental abnormalities via specific pathways, and therefore have the potential to impact on a wide range of organisms.


Subject(s)
Plastics , Water Pollutants, Chemical , Animals , Plastics/toxicity , Plastics/chemistry , Sea Urchins , Echinodermata , Microplastics , Embryonic Development , Water Pollutants, Chemical/analysis
12.
Sci Adv ; 8(48): eabn2258, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36459547

ABSTRACT

DNA methylation [5-methylcytosine (5mC)] is a repressive gene-regulatory mark required for vertebrate embryogenesis. Genomic 5mC is tightly regulated through the action of DNA methyltransferases, which deposit 5mC, and ten-eleven translocation (TET) enzymes, which participate in its active removal through the formation of 5-hydroxymethylcytosine (5hmC). TET enzymes are essential for mammalian gastrulation and activation of vertebrate developmental enhancers; however, to date, a clear picture of 5hmC function, abundance, and genomic distribution in nonvertebrate lineages is lacking. By using base-resolution 5mC and 5hmC quantification during sea urchin and lancelet embryogenesis, we shed light on the roles of nonvertebrate 5hmC and TET enzymes. We find that these invertebrate deuterostomes use TET enzymes for targeted demethylation of regulatory regions associated with developmental genes and show that the complement of identified 5hmC-regulated genes is conserved to vertebrates. This work demonstrates that active 5mC removal from regulatory regions is a common feature of deuterostome embryogenesis suggestive of an unexpected deep conservation of a major gene-regulatory module.


Subject(s)
DNA Demethylation , Vertebrates , Animals , Vertebrates/genetics , Gene Regulatory Networks , Embryonic Development/genetics , DNA Methylation , Mammals
13.
Nat Ecol Evol ; 6(12): 1921-1939, 2022 12.
Article in English | MEDLINE | ID: mdl-36396969

ABSTRACT

Transcription factors are crucial drivers of cellular differentiation during animal development and often share ancient evolutionary origins. The T-box transcription factor Brachyury plays a pivotal role as an early mesoderm determinant and neural repressor in vertebrates; yet, the ancestral function and key evolutionary transitions of the role of this transcription factor remain obscure. Here, we present a genome-wide target-gene screen using chromatin immunoprecipitation sequencing in the sea anemone Nematostella vectensis, an early branching non-bilaterian, and the sea urchin Strongylocentrotus purpuratus, a representative of the sister lineage of chordates. Our analysis reveals an ancestral gene regulatory feedback loop connecting Brachyury, FoxA and canonical Wnt signalling involved in axial patterning that predates the cnidarian-bilaterian split about 700 million years ago. Surprisingly, we also found that part of the gene regulatory network controlling the fate of neuromesodermal progenitors in vertebrates was already present in the common ancestor of cnidarians and bilaterians. However, while several endodermal and neuronal Brachyury target genes are ancestrally shared, hardly any of the key mesodermal downstream targets in vertebrates are found in the sea anemone or the sea urchin. Our study suggests that a limited number of target genes involved in mesoderm formation were newly acquired in the vertebrate lineage, leading to a dramatic shift in the function of this ancestral developmental regulator.


Subject(s)
Mesoderm , Sea Anemones , Animals , Feedback , Transcription Factors , Sea Anemones/genetics
14.
Front Cell Dev Biol ; 10: 991664, 2022.
Article in English | MEDLINE | ID: mdl-36060803

ABSTRACT

The identity and function of a given cell type relies on the differential expression of gene batteries that promote diverse phenotypes and functional specificities. Therefore, the identification of the molecular and morphological fingerprints of cell types across taxa is essential for untangling their evolution. Here we use a multidisciplinary approach to identify the molecular and morphological features of an exocrine, pancreas-like cell type harbored within the sea urchin larval gut. Using single cell transcriptomics, we identify various cell populations with a pancreatic-like molecular fingerprint that are enriched within the S. purpuratus larva digestive tract. Among these, in the region where they reside, the midgut/stomach domain, we find that populations of exocrine pancreas-like cells have a unique regulatory wiring distinct from the rest the of the cell types of the same region. Furthermore, Serial Block-face scanning Electron Microscopy (SBEM) of the exocrine cells shows that this reported molecular diversity is associated to distinct morphological features that reflect the physiological and functional properties of this cell type. Therefore, we propose that these sea urchin exocrine cells are homologous to the well-known mammalian pancreatic acinar cells and thus we trace the origin of this particular cell type to the time of deuterostome diversification. Overall, our approach allows a thorough characterization of a complex cell type and shows how both the transcriptomic and morphological information contribute to disentangling the evolution of cell types and organs such as the pancreatic cells and pancreas.

15.
Cells ; 11(17)2022 08 24.
Article in English | MEDLINE | ID: mdl-36078045

ABSTRACT

Molecular research on the evolution of extraocular photoreception has drawn attention to photosensitive animals lacking proper eye organs. Outside of vertebrates, little is known about this type of sensory system in any other deuterostome. In this study, we investigate such an extraocular photoreceptor cell (PRC) system in developmental stages of the sea urchin Paracentrotus lividus. We provide a general overview of the cell type families present at the mature rudiment stage using single-cell transcriptomics, while emphasizing the PRCs complexity. We show that three neuronal and one muscle-like PRC type families express retinal genes prior to metamorphosis. Two of the three neuronal PRC type families express a rhabdomeric opsin as well as an echinoderm-specific opsin (echinopsin), and their genetic wiring includes sea urchin orthologs of key retinal genes such as hlf, pp2ab56e, barh, otx, ac/sc, brn3, six1/2, pax6, six3, neuroD, irxA, isl and ato. Using qPCR, in situ hybridization, and immunohistochemical analysis, we found that the expressed retinal gene composition becomes more complex from mature rudiment to juvenile stage. The majority of retinal genes are expressed dominantly in the animals' podia, and in addition to the genes already expressed in the mature rudiment, the juvenile podia express a ciliary opsin, another echinopsin, and two Go-opsins. The expression of a core of vertebrate retinal gene orthologs indicates that sea urchins have an evolutionarily conserved gene regulatory toolkit that controls photoreceptor specification and function, and that their podia are photosensory organs.


Subject(s)
Opsins , Paracentrotus , Animals , Echinodermata/metabolism , Opsins/genetics , Opsins/metabolism , Paracentrotus/genetics , Paracentrotus/metabolism , Retina/metabolism , Transcriptome
16.
Front Physiol ; 13: 878062, 2022.
Article in English | MEDLINE | ID: mdl-35514360

ABSTRACT

In situ hybridization is one the most commonly used techniques for developmental and evolutionary biology and has extensively contributed to the identification of distinct cell types and cell states, as well dissecting several molecular mechanisms involved in physiological processes. Moreover, it has been used as a tool to compare distinct gene expression patterns and, therefore, genetic programs across animal species. Nowadays, the predominance of transcriptomics in science has imposed the need to establish a reliable, fast and easy whole mount in situ hybridization protocol. Here we describe a fluorescent in situ hybridization protocol that is rapid, accurate and applicable in a great variety of marine species.

17.
Open Biol ; 12(1): 210262, 2022 01.
Article in English | MEDLINE | ID: mdl-35042403

ABSTRACT

Ovothiols are π-methyl-5-thiohistidines produced in great amounts in sea urchin eggs, where they can act as protective agents against the oxidative burst at fertilization and environmental stressors during development. Here we examined the biological relevance of ovothiol during the embryogenesis of the sea urchin Paracentrotus lividus by assessing the localization of the key biosynthetic enzyme OvoA, both at transcript and protein level, and perturbing its protein translation by morpholino antisense oligonucleotide-mediated knockdown experiments. In addition, we explored the possible involvement of ovothiol in the inflammatory response by assessing ovoA gene expression and protein localization following exposure to bacterial lipopolysaccharide. The results of the present study suggest that ovothiol may be a key regulator of cell proliferation in early developing embryos. Moreover, the localization of OvoA in key larval cells and tissues, in control and inflammatory conditions, suggests that ovothiol may ensure larval skeleton formation and mediate inflammatory processes triggered by bacterial infection. This work significantly contributes to the understanding of the biological function of ovothiols in marine organisms, and may provide new inspiration for the identification of the biological activities of ovothiols in humans, considering the pharmacological potential of these molecules.


Subject(s)
Paracentrotus , Animals , Embryo, Nonmammalian , Humans , Larva , Methylhistidines/metabolism , Paracentrotus/metabolism
18.
Elife ; 102021 11 25.
Article in English | MEDLINE | ID: mdl-34821556

ABSTRACT

Identifying the molecular fingerprint of organismal cell types is key for understanding their function and evolution. Here, we use single-cell RNA sequencing (scRNA-seq) to survey the cell types of the sea urchin early pluteus larva, representing an important developmental transition from non-feeding to feeding larva. We identify 21 distinct cell clusters, representing cells of the digestive, skeletal, immune, and nervous systems. Further subclustering of these reveal a highly detailed portrait of cell diversity across the larva, including the identification of neuronal cell types. We then validate important gene regulatory networks driving sea urchin development and reveal new domains of activity within the larval body. Focusing on neurons that co-express Pdx-1 and Brn1/2/4, we identify an unprecedented number of genes shared by this population of neurons in sea urchin and vertebrate endocrine pancreatic cells. Using differential expression results from Pdx-1 knockdown experiments, we show that Pdx1 is necessary for the acquisition of the neuronal identity of these cells. We hypothesize that a network similar to the one orchestrated by Pdx1 in the sea urchin neurons was active in an ancestral cell type and then inherited by neuronal and pancreatic developmental lineages in sea urchins and vertebrates.


Subject(s)
Cell Differentiation/genetics , Nervous System/growth & development , Strongylocentrotus purpuratus/growth & development , Animals , Larva/genetics , Larva/growth & development , Nervous System Physiological Phenomena , RNA-Seq , Single-Cell Analysis , Strongylocentrotus purpuratus/genetics
19.
J Hypertens ; 39(9): 1852-1858, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34001810

ABSTRACT

BACKGROUND: Exaggerated variability of blood pressure (BP) poses additional stress on cardiovascular system independent of BP average value, increasing risk of target organ damage (HMOD) and cardiovascular events. We assessed the impact of visit-to-visit variability (VVV) of BP on development of cardiovascular events and HMOD. METHODS: Standard deviation (SD) and coefficient of variability of mean SBP and DBP were calculated in 3555 patients from the Campania Salute Network registry, with available echocardiogram and more than six visits during follow-up. Values from the first visit were excluded. The impact of VVV of BP on cardiovascular events, and mediation of HMOD were assessed at final visit. RESULTS: Mean number of visits was 11 ±â€Š6 with mean interval between visits of 9.1 ±â€Š3.7 months. Mean visit-to-visit SD during follow-up was 13 ±â€Š5 for systolic and 8 ±â€Š3 mmHg for DBP; coefficients of variability were 9.7 ±â€Š3.5 and of 9.6 ±â€Š3.2, respectively. In multivariable analysis, left ventricular mass at follow-up was correlated with systolic VVV of BP independently of significant effect of age, BMI, mean SBP during follow-up and initial left ventricular mass. Follow-up GFR was inversely associated with systolic and diastolic VVV, independently of significant effect of age, mean glucose and SBP during follow-up, and initial GFR. In Cox regression, high VVV of BP was also associated with increased risk of cardiovascular events (hazard ratio 1.49, 95% confidence interval 1.08-2.06, P = 0.015), independently of significant effect of HMOD. CONCLUSION: VVV is associated with prevalent HMOD and development of cardiovascular events, independently of mean BP value during follow-up and HMOD.


Subject(s)
Hypertension , Blood Pressure , Blood Pressure Determination , Diastole , Humans , Hypertension/diagnosis , Systole
20.
Evodevo ; 12(1): 3, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33726833

ABSTRACT

BACKGROUND: Understanding the molecular and cellular processes that underpin animal development are crucial for understanding the diversity of body plans found on the planet today. Because of their abundance in the fossil record, and tractability as a model system in the lab, skeletons provide an ideal experimental model to understand the origins of animal diversity. We herein use molecular and cellular markers to understand the growth and development of the juvenile sea urchin (echinoid) skeleton. RESULTS: We developed a detailed staging scheme based off of the first ~ 4 weeks of post-metamorphic life of the regular echinoid Paracentrotus lividus. We paired this scheme with immunohistochemical staining for neuronal, muscular, and skeletal tissues, and fluorescent assays of skeletal growth and cell proliferation to understand the molecular and cellular mechanisms underlying skeletal growth and development of the sea urchin body plan. CONCLUSIONS: Our experiments highlight the role of skeletogenic proteins in accretionary skeletal growth and cell proliferation in the addition of new metameric tissues. Furthermore, this work provides a framework for understanding the developmental evolution of sea urchin body plans on macroevolutionary timescales.

SELECTION OF CITATIONS
SEARCH DETAIL
...