Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
ACS Appl Mater Interfaces ; 15(20): 24306-24318, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37163664

ABSTRACT

Two-dimensional (2D) siloxene (Si6O3H6) has shown promise as a negative electrode material for Li-ion batteries due to its high gravimetric capacity and superior mechanical properties under (de)lithiation compared to bulk Si. In this work, we prepare purified siloxene nanosheets through the removal of bulk Si contaminants, use ultrasonication to control the lateral size and thickness of the nanosheets, and probe the effects of the resulting morphology and purity on the electrochemistry. The thin siloxene nanosheets formed after 4 h of ultrasonication deliver an average capacity of 810 mA h/g under a 1000 mA/g rate over 200 cycles with a capacity retention of 76%. Interestingly, the purified siloxene shows lower initial capacity but superior capacity retention over extended cycling. The 2D morphology benefit is illustrated where the parent siloxene nanosheet morphology and structure were largely maintained based on operando optoelectrochemistry, in situ Raman, ex situ scanning electron microscopy, and ex situ transmission electron microscopy. Furthermore, the purified siloxene-based electrode free from crystalline Si impurity experiences the least expansion upon (de)lithiation as visualized by cross-section electron microscopy of samples recovered post-cycling.

2.
Mater Horiz ; 9(8): 2160-2171, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35642734

ABSTRACT

Zinc (Zn)-anode batteries, although safe and non-flammable, are precluded from promising applications because of their low voltage (<2 V) and poor rechargeability. Here, we report the fabrication of rechargeable membrane-less Zn-anode batteries with high voltage properties (2.5 to 3.4 V) achieved through coupling cathodes and Zn-anodes in gelled concentrated acid and alkaline solutions separated by a gelled buffer interlayer containing the working ions. The concentrated gelled buffer interlayers perform dual functions of regulating the pH of the system and acting as the source and sink of the working ions. With this strategy we show low-cost membrane-less 2.5 to 3.4 V Zn-manganese dioxide (MnO2) batteries capable of cycling 10-100% of 617 mA h g-1-MnO2 and 20-30% of 820 mA h g-1-Zn and demonstrate their application in electric vehicles. This strategy is then applied to other oxide-based cathode systems like Cu2O and V2O5, where voltages of 2 to 3 V are obtained in membrane-less batteries.

3.
Polymers (Basel) ; 14(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35160407

ABSTRACT

Zinc (Zn)-manganese dioxide (MnO2) rechargeable batteries have attracted research interest because of high specific theoretical capacity as well as being environmentally friendly, intrinsically safe and low-cost. Liquid electrolytes, such as potassium hydroxide, are historically used in these batteries; however, many failure mechanisms of the Zn-MnO2 battery chemistry result from the use of liquid electrolytes, including the formation of electrochemically inert phases such as hetaerolite (ZnMn2O4) and the promotion of shape change of the Zn electrode. This manuscript reports on the fundamental and commercial results of gel electrolytes for use in rechargeable Zn-MnO2 batteries as an alternative to liquid electrolytes. The manuscript also reports on novel properties of the gelled electrolyte such as limiting the overdischarge of Zn anodes, which is a problem in liquid electrolyte, and finally its use in solar microgrid applications, which is a first in academic literature. Potentiostatic and galvanostatic tests with the optimized gel electrolyte showed higher capacity retention compared to the tests with the liquid electrolyte, suggesting that gel electrolyte helps reduce Mn3+ dissolution and zincate ion migration from the Zn anode, improving reversibility. Cycling tests for commercially sized prismatic cells showed the gel electrolyte had exceptional cycle life, showing 100% capacity retention for >700 cycles at 9.5 Ah and for >300 cycles at 19 Ah, while the 19 Ah prismatic cell with a liquid electrolyte showed discharge capacity degradation at 100th cycle. We also performed overdischarge protection tests, in which a commercialized prismatic cell with the gel electrolyte was discharged to 0 V and achieved stable discharge capacities, while the liquid electrolyte cell showed discharge capacity fade in the first few cycles. Finally, the gel electrolyte batteries were tested under IEC solar off-grid protocol. It was noted that the gelled Zn-MnO2 batteries outperformed the Pb-acid batteries. Additionally, a designed system nameplated at 2 kWh with a 12 V system with 72 prismatic cells was tested with the same protocol, and it has entered its third year of cycling. This suggests that Zn-MnO2 rechargeable batteries with the gel electrolyte will be an ideal candidate for solar microgrid systems and grid storage in general.

4.
ACS Appl Mater Interfaces ; 12(45): 50406-50417, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33118811

ABSTRACT

Alkaline zinc-manganese dioxide (Zn-MnO2) batteries are well suited for grid storage applications because of their inherently safe, aqueous electrolyte and established materials supply chain, resulting in low production costs. With recent advances in the development of Cu/Bi-stabilized birnessite cathodes capable of the full 2-electron capacity equivalent of MnO2 (617 mA h/g), there is a need for selective separators that prevent zincate (Zn(OH)4)2- transport from the anode to the cathode during cycling, as this electrode system fails in the presence of dissolved zinc. Herein, we present the synthesis of N-butylimidazolium-functionalized polysulfone (NBI-PSU)-based separators and evaluate their ability to selectively transport hydroxide over zincate. We then examine their impact on the cycling of high depth of discharge Zn/(Cu/Bi-MnO2) batteries when inserted in between the cathode and anode. Initially, we establish our membranes' selectivity by performing zincate and hydroxide diffusion tests, showing a marked improvement in zincate-blocking (DZn (cm2/min): 0.17 ± 0.04 × 10-6 for 50-PSU, our most selective separator vs 2.0 ± 0.8 × 10-6 for Cellophane 350P00 and 5.7 ± 0.8 × 10-6 for Celgard 3501), while maintaining similar crossover rates for hydroxide (DOH (cm2/min): 9.4 ± 0.1 × 10-6 for 50-PSU vs 17 ± 0.5 × 10-6 for Cellophane 350P00 and 6.7 ± 0.6 × 10-6 for Celgard 3501). We then implement our membranes into cells and observe an improvement in cycle life over control cells containing only the commercial separators (cell lifetime extended from 21 to 79 cycles).

5.
J Infect Dis ; 221(5): 775-785, 2020 02 18.
Article in English | MEDLINE | ID: mdl-31585009

ABSTRACT

BACKGROUND: The malaria parasite Plasmodium falciparum holds an extensive genetic polymorphism. In this pooled analysis, we investigate how the multiplicity in asymptomatic P. falciparum infections-that is, the number of coinfecting clones-affects the subsequent risk of clinical malaria in populations living under different levels of transmission. METHODS: A systematic search of the literature was performed to identify studies in which P. falciparum infections were genotyped in asymptomatic individuals who were followed up prospectively regarding the incidence of clinical malaria. Individual participant data were pooled from 15 studies (n = 3736 individuals). RESULTS: Multiclonal asymptomatic infections were associated with a somewhat increased subsequent risk of clinical malaria in the youngest children, followed by an initial declining risk with age irrespective of transmission intensity. At approximately 5 years of age, the risk continued the gradual decline with age in high-transmission settings. However, in older children in moderate-, low-, and seasonal-transmission settings, multiclonal infections were either not significantly associated with the risk of subsequent febrile malaria or were associated with an increased risk. CONCLUSIONS: The number of clones in asymptomatic P. falciparum infections is associated with different risks of subsequent clinical malaria depending on age and transmission intensity.


Subject(s)
Asymptomatic Infections/epidemiology , Genotype , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Antigens, Protozoan/genetics , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Incidence , Infant , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Male , Merozoite Surface Protein 1/genetics , Middle Aged , Prospective Studies , Protozoan Proteins/genetics , Risk , Young Adult
6.
Trends Parasitol ; 35(8): 588-590, 2019 08.
Article in English | MEDLINE | ID: mdl-31266710

ABSTRACT

A recent paper (Zhang et al., PLoS Biol., 2019) shines remarkable new light onto the malaria antigenic variation story. Using CRISPR/Cas9-targeted chromosome breaks and long-read whole-genome sequencing, they followed the fate of detached subtelomeric PfEMP1/var genes and demonstrated that these initiate cascades of recombination at sites far from the original break.


Subject(s)
Malaria, Falciparum , Malaria , Parasites , Protozoan Proteins/genetics , Animals , Antigenic Variation , Humans , Plasmodium falciparum
7.
Nat Commun ; 10(1): 2060, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31089131

ABSTRACT

Uncontrollable bleeding is a major problem in surgical procedures and after major trauma. Existing hemostatic agents poorly control hemorrhaging from traumatic arterial and cardiac wounds because of their weak adhesion to wet and mobile tissues. Here we design a photo-reactive adhesive that mimics the extracellular matrix (ECM) composition. This biomacromolecule-based matrix hydrogel can undergo rapid gelling and fixation to adhere and seal bleeding arteries and cardiac walls after UV light irradiation. These repairs can withstand up to 290 mm Hg blood pressure, significantly higher than blood pressures in most clinical settings (systolic BP 60-160 mm Hg). Most importantly, the hydrogel can stop high-pressure bleeding from pig carotid arteries with 4~ 5 mm-long incision wounds and from pig hearts with 6 mm diameter cardiac penetration holes. Treated pigs survived after hemostatic treatments with this hydrogel, which is well-tolerated and appears to offer significant clinical advantage as a traumatic wound sealant.


Subject(s)
Adhesives/therapeutic use , Biopolymers/therapeutic use , Hemorrhage/therapy , Hemostatics/therapeutic use , Hydrogels/therapeutic use , Adhesives/chemistry , Adhesives/radiation effects , Animals , Arteries/injuries , Arteries/surgery , Biopolymers/chemistry , Biopolymers/radiation effects , Cell Line , Coronary Vessels/injuries , Coronary Vessels/surgery , Disease Models, Animal , Extracellular Matrix/chemistry , Hemorrhage/etiology , Hemostatics/chemistry , Hemostatics/radiation effects , Humans , Hydrogels/chemistry , Hydrogels/radiation effects , Male , Polymerization/radiation effects , Surgical Wound/complications , Treatment Outcome , Ultraviolet Rays
10.
PLoS One ; 9(1): e83704, 2014.
Article in English | MEDLINE | ID: mdl-24421900

ABSTRACT

The Block 2 region of the merozoite surface protein-1 (MSP-1) of Plasmodium falciparum has been identified as a target of protective immunity by a combination of seroepidemiology and parasite population genetics. Immunogenicity studies in small animals and Aotus monkeys were used to determine the efficacy of recombinant antigens derived from this region of MSP-1 as a potential vaccine antigen. Aotus lemurinus griseimembra monkeys were immunized three times with a recombinant antigen derived from the Block 2 region of MSP-1 of the monkey-adapted challenge strain, FVO of Plasmodium falciparum, using an adjuvant suitable for use in humans. Immunofluorescent antibody assays (IFA) against erythrocytes infected with P. falciparum using sera from the immunized monkeys showed that the MSP-1 Block 2 antigen induced significant antibody responses to whole malaria parasites. MSP-1 Block 2 antigen-specific enzyme-linked immunosorbent assays (ELISA) showed no significant differences in antibody titers between immunized animals. Immunized animals were challenged with the virulent P. falciparum FVO isolate and monitored for 21 days. Two out of four immunized animals were able to control their parasitaemia during the follow-up period, whereas two out of two controls developed fulminating parasitemia. Parasite-specific serum antibody titers measured by IFA were four-fold higher in protected animals than in unprotected animals. In addition, peptide-based epitope mapping of serum antibodies from immunized Aotus showed distinct differences in epitope specificities between protected and unprotected animals.


Subject(s)
Antibody Formation/immunology , Haplorhini/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Merozoite Surface Protein 1/immunology , Plasmodium falciparum/immunology , Adjuvants, Immunologic , Amino Acid Sequence , Animals , Antibody Specificity/immunology , Antigens, Protozoan/immunology , Epitope Mapping , Epitopes/chemistry , Epitopes/immunology , Haplorhini/blood , Haplorhini/parasitology , Humans , Immunization , Malaria, Falciparum/blood , Malaria, Falciparum/parasitology , Molecular Sequence Data , Parasitemia/immunology , Parasitemia/parasitology , Recombinant Proteins/immunology
11.
Nucleic Acids Res ; 42(4): 2270-81, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24253306

ABSTRACT

Many bacterial, viral and parasitic pathogens undergo antigenic variation to counter host immune defense mechanisms. In Plasmodium falciparum, the most lethal of human malaria parasites, switching of var gene expression results in alternating expression of the adhesion proteins of the Plasmodium falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome-wide recombination hotspots in var genes, we show that during the parasite's sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens.


Subject(s)
Antigenic Variation/genetics , Antigens, Protozoan/genetics , DNA, Protozoan/chemistry , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Recombination, Genetic , Antigens, Protozoan/chemistry , Genes, Protozoan , Multigene Family , Nucleic Acid Conformation , Protein Structure, Tertiary , Protozoan Proteins/chemistry , Saccharomyces cerevisiae/genetics
12.
Malar J ; 11: 429, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23259643

ABSTRACT

BACKGROUND: The ability of Plasmodium falciparum to undergo antigenic variation, by switching expression among protein variants encoded by multigene families, such as var, rif and stevor, is key to the survival of this parasite in the human host. The RIFIN protein family can be divided into A and B types based on the presence or absence of a 25 amino acid motif in the semi-conserved domain. A particular type B RIFIN, PF13_0006, has previously been shown to be strongly transcribed in the asexual and sexual stages of P. falciparum in vitro. METHODS: Antibodies to recombinant PF13_0006 RIFIN were used in immunofluorescence and confocal imaging of 3D7 parasites throughout the asexual reproduction and sexual development to examine the expression of PF13_0006. Furthermore, reactivity to recombinant PF13_0006 was measured in plasma samples collected from individuals from both East and West African endemic areas. RESULTS: The PF13_0006 RIFIN variant appeared expressed by both released merozoites and gametes after emergence. 7.4% and 12.1% of individuals from East and West African endemic areas, respectively, carry plasma antibodies that recognize recombinant PF13_0006, where the antibody responses were more common among older children. CONCLUSIONS: The stage specificity of PF13_0006 suggests that the diversity of RIFIN variants has evolved to provide multiple specialized functions in different stages of the parasite life cycle. These data also suggest that RIFIN variants antigenically similar to PF13_0006 occur in African parasite populations.


Subject(s)
Membrane Proteins/genetics , Membrane Proteins/immunology , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Adolescent , Adult , Africa/epidemiology , Animals , Antibodies, Protozoan/blood , Antigenic Variation/genetics , Antigens, Protozoan/genetics , Base Sequence , Child , Child, Preschool , DNA, Protozoan/genetics , Endemic Diseases , Female , Gene Expression Regulation, Developmental , Genes, Protozoan , Host-Parasite Interactions/immunology , Humans , Infant , Malaria, Falciparum/epidemiology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Male , Merozoite Surface Protein 1/metabolism , Merozoites/immunology , Middle Aged , Plasmodium falciparum/growth & development , Young Adult
13.
J Vis Exp ; (68)2012 Oct 07.
Article in English | MEDLINE | ID: mdl-23070076

ABSTRACT

Adhesion of Plasmodium falciparum infected erythrocytes (IE) to human endothelial receptors during malaria infections is mediated by expression of PfEMP1 protein variants encoded by the var genes. The haploid P. falciparum genome harbors approximately 60 different var genes of which only one has been believed to be transcribed per cell at a time during the blood stage of the infection. How such mutually exclusive regulation of var gene transcription is achieved is unclear, as is the identification of individual var genes or sub-groups of var genes associated with different receptors and the consequence of differential binding on the clinical outcome of P. falciparum infections. Recently, the mutually exclusive transcription paradigm has been called into doubt by transcription assays based on individual P. falciparum transcript identification in single infected erythrocytic cells using RNA fluorescent in situ hybridization (FISH) analysis of var gene transcription by the parasite in individual nuclei of P. falciparum IE(1). Here, we present a detailed protocol for carrying out the RNA-FISH methodology for analysis of var gene transcription in single-nuclei of P. falciparum infected human erythrocytes. The method is based on the use of digoxigenin- and biotin- labeled antisense RNA probes using the TSA Plus Fluorescence Palette System(2) (Perkin Elmer), microscopic analyses and freshly selected P. falciparum IE. The in situ hybridization method can be used to monitor transcription and regulation of a variety of genes expressed during the different stages of the P. falciparum life cycle and is adaptable to other malaria parasite species and other organisms and cell types.


Subject(s)
DNA, Protozoan/genetics , In Situ Hybridization, Fluorescence/methods , Plasmodium falciparum/genetics , Single-Cell Analysis/methods , DNA, Protozoan/chemistry , Erythrocytes/parasitology , Humans , Plasmodium falciparum/chemistry , RNA, Antisense/genetics , Transcription, Genetic
14.
Infect Immun ; 80(3): 1280-7, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22202121

ABSTRACT

Merozoite surface protein 1 (MSP1) is a target for malaria vaccine development. Antibodies to the 19-kDa carboxy-terminal region referred to as MSP1(19) inhibit erythrocyte invasion and parasite growth, with some MSP1-specific antibodies shown to inhibit the proteolytic processing of MSP1 that occurs at invasion. We investigated a series of antibodies purified from rabbits immunized with MSP1(19) and AMA1 recombinant proteins for their ability to inhibit parasite growth, initially looking at MSP1 processing. Although significant inhibition of processing was mediated by several of the antibody samples, there was no clear relationship with overall growth inhibition by the same antibodies. However, no antibody samples inhibited processing but not invasion, suggesting that inhibition of MSP1 processing contributes to but is not the only mechanism of antibody-mediated inhibition of invasion and growth. Examining other mechanisms by which MSP1-specific antibodies inhibit parasite growth, we show that MSP1(19)-specific antibodies are taken up into invaded erythrocytes, where they persist for significant periods and result in delayed intracellular parasite development. This delay may result from antibody interference with coalescence of MSP1(19)-containing vesicles with the food vacuole. Antibodies raised against a modified recombinant MSP1(19) sequence were more efficient at delaying intracellular growth than those to the wild-type protein. We propose that antibodies specific for MSP1(19) can mediate inhibition of parasite growth by at least three mechanisms: inhibition of MSP1 processing, direct inhibition of invasion, and inhibition of parasite development following invasion. The balance between mechanisms may be modulated by modifying the immunogen used to induce the antibodies.


Subject(s)
Antibodies, Protozoan/immunology , Merozoite Surface Protein 1/immunology , Merozoite Surface Protein 1/metabolism , Merozoites/growth & development , Merozoites/immunology , Plasmodium falciparum/growth & development , Plasmodium falciparum/immunology , Animals , Erythrocytes/parasitology , Rabbits
15.
Malar J ; 10: 255, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21880156

ABSTRACT

Since 2000, under the Fifth and subsequent Framework Programmes, the European Commission has funded research to spur the development of a malaria vaccine. This funding has contributed to the promotion of an integrated infrastructure consisting of European basic, applied and clinical scientists in academia and small and medium enterprises, together with partners in Africa. Research has added basic understanding of what is required of a malaria vaccine, allowing selected candidates to be prioritized and some to be moved forward into clinical trials. To end the health burden of malaria, and its economic and social impact on development, the international community has now essentially committed itself to the eventual eradication of malaria. Given the current tentative advances towards elimination or eradication of malaria in many endemic areas, malaria vaccines constitute an additional and almost certainly essential component of any strategic plan to interrupt transmission of malaria. However, funding for malaria vaccines has been substantially reduced in the Seventh Framework Programme compared with earlier Framework Programmes, and without further support the gains made by earlier European investment will be lost.


Subject(s)
Biomedical Research/economics , Capital Financing/trends , Drug Discovery/economics , Malaria Vaccines/immunology , Malaria/prevention & control , Europe , Humans , Malaria/epidemiology
16.
J Infect Dis ; 203(11): 1679-85, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21592998

ABSTRACT

Placental malaria infections are caused by Plasmodium falciparum-infected red blood cells sequestering in the placenta by binding to chondroitin sulfate A, mediated by VAR2CSA, a variant of the PfEMP1 family of adhesion antigens. Recent studies have shown that many P. falciparum genomes have multiple genes coding for different VAR2CSA proteins, and parasites with >1 var2csa gene appear to be more common in pregnant women with placental malaria than in nonpregnant individuals. We present evidence that, in pregnant women, parasites containing multiple var2csa-type genes possess a selective advantage over parasites with a single var2csa gene. Accumulation of parasites with multiple copies of the var2csa gene during the course of pregnancy was also correlated with the development of antibodies involved in blocking VAR2CSA adhesion. The data suggest that multiplicity of var2csa-type genes enables P. falciparum parasites to persist for a longer period of time during placental infections, probably because of their greater capacity for antigenic variation and evasion of variant-specific immune responses.


Subject(s)
Antigens, Protozoan/genetics , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Pregnancy Complications, Infectious/parasitology , Protozoan Proteins/genetics , Adolescent , Adult , Anemia/blood , Anemia/genetics , Anemia/parasitology , Antibodies, Protozoan/blood , Birth Weight , Female , Gene Dosage/genetics , Genetic Variation , Humans , Immunoglobulin G/blood , Longitudinal Studies , Malaria, Falciparum/blood , Polymerase Chain Reaction , Pregnancy , Pregnancy Complications, Infectious/blood , Selection, Genetic
17.
Adv Appl Microbiol ; 74: 77-96, 2011.
Article in English | MEDLINE | ID: mdl-21459194

ABSTRACT

How immunity to malaria develops remains one of the great unresolved issues in bio-medicine and resolution of its various paradoxes is likely to be the key to developing effective malaria vaccines. The basic epidemiological observations are; under conditions of intense natural transmission, humans do become immune to P. falciparum malaria, but this is a slow process requiring multiple disease episodes which many, particularly young children, do not survive. Adult survivors are immune to the symptoms of malaria, and unless pregnant, can control the growth of most or all new inoculations. Sterile immunity is not achieved and chronic parasitization of apparently healthy adults is the norm. In this article, we analyse the best understood malaria "antigenic variation" system, that based on Plasmodium falciparum's PfEMP1-type cytoadhesion antigens, and critically review recent literature on the function and control of this multi-gene family of parasite variable surface antigens.


Subject(s)
Antigenic Variation , Plasmodium falciparum , Animals , Antigens, Protozoan , Antigens, Surface , Erythrocytes , Humans , Malaria, Falciparum , Protozoan Proteins
18.
J Biol Chem ; 286(18): 15908-17, 2011 May 06.
Article in English | MEDLINE | ID: mdl-21398524

ABSTRACT

Malaria during pregnancy is a major health problem for African women. The disease is caused by Plasmodium falciparum malaria parasites, which accumulate in the placenta by adhering to chondroitin sulfate A (CSA). The interaction between infected erythrocytes and the placental receptor is mediated by a parasite expressed protein named VAR2CSA. A vaccine protecting pregnant women against placental malaria should induce antibodies inhibiting the interaction between VAR2CSA and CSA. Much effort has been put into defining the part of the 350 kDa VAR2CSA protein that is responsible for binding. It has been shown that full-length recombinant VAR2CSA binds specifically to CSA with high affinity, however to date no sub-fragment of VAR2CSA has been shown to interact with CSA with similar affinity or specificity. In this study, we used a biosensor technology to examine the binding properties of a panel of truncated VAR2CSA proteins. The experiments indicate that the core of the CSA-binding site is situated in three domains, DBL2X-CIDR(PAM) and a flanking domain, located in the N-terminal part of VAR2CSA. Furthermore, recombinant VAR2CSA subfragments containing this region elicit antibodies with high parasite adhesion blocking activity in animal immunization experiments.


Subject(s)
Chondroitin Sulfates/chemistry , Peptide Mapping , Plasmodium falciparum/chemistry , Animals , Antigens, Protozoan , Biosensing Techniques/methods , Chondroitin Sulfates/genetics , Chondroitin Sulfates/immunology , Chondroitin Sulfates/metabolism , Erythrocytes/immunology , Erythrocytes/metabolism , Erythrocytes/parasitology , Female , Humans , Malaria Vaccines/chemistry , Malaria Vaccines/genetics , Malaria Vaccines/immunology , Malaria Vaccines/metabolism , Malaria, Falciparum/epidemiology , Malaria, Falciparum/genetics , Malaria, Falciparum/immunology , Malaria, Falciparum/metabolism , Malaria, Falciparum/prevention & control , Placenta/immunology , Placenta/metabolism , Placenta/parasitology , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Plasmodium falciparum/metabolism , Pregnancy , Pregnancy Complications, Parasitic/epidemiology , Pregnancy Complications, Parasitic/genetics , Pregnancy Complications, Parasitic/immunology , Pregnancy Complications, Parasitic/metabolism , Pregnancy Complications, Parasitic/prevention & control , Protein Binding , Protein Structure, Tertiary , Rats , Rats, Wistar , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism
19.
Int J Parasitol ; 41(1): 71-80, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20816844

ABSTRACT

The cell division cycle and mitosis of intra-erythrocytic (IE) Plasmodium falciparum are poorly understood aspects of parasite development which affect malaria molecular pathogenesis. Specifically, the timing of the multiple gap (G), DNA synthesis (S) and chromosome separation (M) phases of parasite mitosis are not well defined, nor whether genome divisions are immediately followed by cleavage of the nuclear envelope. Curiously, daughter merozoite numbers do not follow the geometric expansion expected from equal numbers of binary divisions, an outcome difficult to explain using the standard model of cell cycle regulation. Using controlled synchronisation techniques, confocal microscopy to visualise key organelles and fluorescence in situ hybridization (FISH) to follow the movements and replication of genes and telomeres, we have re-analysed the timing and progression of mitotic events. The asynchronous duplications of the P. falciparum centrosome equivalents, the centriolar plaques, are established and these are correlated with chromosome and nuclear divisions in a new model of P. falciparum schizogony. Our results improve the resolution of the cell cycle and its phases during P. falciparum IE development, showing that asynchronous, independent nuclear division occurs during schizogony, with the centriolar plaques playing a major role in regulating mitotic progression.


Subject(s)
Cell Division , Erythrocytes/parasitology , Plasmodium falciparum/physiology , Humans , In Situ Hybridization, Fluorescence , Microscopy, Confocal , Organelles/physiology
20.
Malar J ; 9: 325, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-21078147

ABSTRACT

BACKGROUND: The PFD1235w Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigen is associated with severe malaria in children and can be expressed on the surface of infected erythrocytes (IE) adhering to ICAM1. However, the exact three-dimensional structure of this PfEMP1 and its surface-exposed epitopes are unknown. An insect cell and Escherichia coli based system was used to express single and double domains encoded by the pfd1235w var gene. The resulting recombinant proteins have been evaluated for yield and purity and their ability to induce rat antibodies, which react with the native PFD1235w PfEMP1 antigen expressed on 3D7PFD1235w-IE. Their recognition by human anti-malaria antibodies from previously infected Tanzanian donors was also analysed. METHODS: The recombinant proteins were run on SDS-PAGE and Western blots for quantification and size estimation. Insect cell and E. coli-produced recombinant proteins were coupled to a bead-based Luminex assay to measure the plasma antibody reactivity of 180 samples collected from Tanzanian individuals. The recombinant proteins used for immunization of rats and antisera were also tested by flow cytometry for their ability to surface label 3D7PFD1235w-IE. RESULTS: All seven pAcGP67A constructs were successfully expressed as recombinant protein in baculovirus-infected insect cells and subsequently produced to a purity of 60-97% and a yield of 2-15 mg/L. By comparison, only three of seven pET101/D-TOPO constructs expressed in the E. coli system could be produced at all with purity and yield ranging from 3-95% and 6-11 mg/L. All seven insect cell, but only two of the E. coli produced proteins induced antibodies reactive with native PFD1235w expressed on 3D7PFD1235w-IE. The recombinant proteins were recognized in an age- and transmission intensity-dependent manner by antibodies from 180 Tanzanian individuals in a bead-based Luminex assay. CONCLUSIONS: The baculovirus based insect cell system was distinctly superior to the E. coli expression system in producing a larger number of different recombinant PFD1235w protein domains and these were significantly easier to purify at a useful yield. However, proteins produced in both systems were able to induce antibodies in rats, which can recognize the native PFD1235w on the surface of IE.


Subject(s)
Antibodies, Protozoan/blood , Immunoglobulin G/blood , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Protozoan Proteins/immunology , Adolescent , Animals , Baculoviridae/genetics , Cell Line , Child , Child, Preschool , Escherichia coli/genetics , Humans , Insecta , Malaria Vaccines/genetics , Malaria Vaccines/isolation & purification , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification , Rats , Tanzania , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/isolation & purification , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...