Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Neurol ; 76(2): 252-68, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24942777

ABSTRACT

OBJECTIVE: Chronically demyelinated multiple sclerosis (MS) lesions are frequently characterized by scarce undifferentiated oligodendrocyte progenitor cells (OPCs), suggesting the exhaustion of a local OPC pool followed by failure of recruitment and differentiation. Stimulating prompt OPC recruitment following demyelination could improve myelin repair by providing sufficient numbers of remyelinating cells during the repair-permissive period. Understanding mechanisms that determine this process may have important therapeutic implications. We therefore investigated the role of the guidance molecule netrin-1 in OPC recruitment and central nervous system (CNS) remyelination. METHODS: Netrin-1 expression was analyzed immunohistochemically in different types of MS lesions and in the murine lysolecithin model of demyelination. The influence of netrin-1 on CNS remyelination was examined using gain and loss of function experiments. RESULTS: We show that in MS lesions, astrocytes upregulate netrin-1 expression early during demyelination and netrin-1 receptors are expressed by OPCs. In contrast, in the efficiently repairing lysolecithin model of demyelination (astrocyte-free), netrin-1 expression is absent during early phases and detected concomitant with completion of OPC recruitment. In vitro migration assays demonstrated that netrin-1 is a chemorepellent for migrating adult OPCs. In mouse lesions, antibody-mediated disruption of netrin-1 function at the peak phase of recruitment increased OPC numbers. Conversely, lentiviral-mediated induction of netrin-1 expression prior to OPC recruitment reduced the number of cells recruited and impaired remyelination. INTERPRETATION: Our findings support the conclusion that netrin-1 expression within demyelinating MS plaques blocks OPC recruitment, which with repeated demyelinating episodes contributes to permanent remyelination failure.


Subject(s)
Central Nervous System/metabolism , Nerve Growth Factors/metabolism , Neural Stem Cells/physiology , Oligodendroglia/physiology , Receptors, Cell Surface/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Demyelinating Diseases/metabolism , Disease Models, Animal , Mice , Mice, Inbred C57BL , Nerve Regeneration/physiology , Netrin Receptors , Netrin-1
SELECTION OF CITATIONS
SEARCH DETAIL
...