Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 42(14): 3337-3345, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38637212

ABSTRACT

OBJECTIVES: We explored the role of metabolic hormones and the B-cell repertoire in the association between nutritional status and vaccine responses. METHODS: In this prospective cohort study, nested within a larger randomized open-label trial, 211 South African children received two doses of measles vaccine and two or three doses of pneumococcal conjugate vaccine (PCV). Metabolic markers (leptin, ghrelin and adiponectin) and distribution of B-cell subsets (n = 106) were assessed at 18 months of age. RESULTS: Children with a weight-for-height z-score (WHZ) ≤ -1 standard deviation (SD) at booster vaccination had a decreased mean serotype-specific PCV IgG response compared with those with WHZ > -1 and <+1 SD or WHZ ≥ +1 SD at 9 months post-booster (18 months of age). (Naive) pre-germinal center B-cells were associated with pneumococcal antibody decay between one to nine months post-booster. Predictive performance of elastic net models for the combined effect of B-cell subsets, metabolic hormones and nutritional status (in addition to age, sex, and randomization group) on measles and PCV vaccine response had an average area under the receiver operating curve of 0.9 and 0.7, respectively. CONCLUSIONS: The combined effect of B-cell subsets, metabolic hormones and nutritional status correlated well with the vaccination response for measles and most PCV serotypes. CLINICALTRIALS: gov registration of parent studies: NCT02943902 and NCT03330171.


Subject(s)
Antibodies, Bacterial , Measles Vaccine , Nutritional Status , Pneumococcal Vaccines , Humans , South Africa , Male , Female , Nutritional Status/immunology , Prospective Studies , Infant , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/administration & dosage , Measles Vaccine/immunology , Measles Vaccine/administration & dosage , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Leptin/blood , B-Lymphocytes/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Immunization, Secondary , Immunoglobulin G/blood , Ghrelin/immunology , B-Lymphocyte Subsets/immunology , Vaccines, Conjugate/immunology , Vaccines, Conjugate/administration & dosage , Vaccination
2.
Clin Exp Immunol ; 216(2): 159-171, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38330230

ABSTRACT

Natural killer (NK) cells are innate lymphocytes capable to recognize and kill virus-infected and cancer cells. In the past years, the use of allogeneic NK cells as anti-cancer therapy gained interest due to their ability to induce graft-versus-cancer responses without causing graft-versus-host disease and multiple protocols have been developed to produce high numbers of activated NK cells. While the ability of these cells to mediate tumor kill has been extensively studied, less is known about their capacity to influence the activity of other immune cells that may contribute to a concerted anti-tumor response in the tumor microenvironment (TME). In this study, we analyzed how an allogeneic off-the-shelf cord blood stem cell-derived NK-cell product influenced the activation of dendritic cells (DC). Crosstalk between NK cells and healthy donor monocyte-derived DC (MoDC) resulted in the release of IFNγ and TNF, MoDC activation, and the release of the T-cell-recruiting chemokines CXCL9 and CXCL10. Moreover, in the presence of prostaglandin-E2, NK cell/MoDC crosstalk antagonized the detrimental effect of IL-10 on MoDC maturation leading to higher expression of multiple (co-)stimulatory markers. The NK cells also induced activation of conventional DC2 (cDC2) and CD8+ T cells, and the release of TNF, GM-CSF, and CXCL9/10 in peripheral blood mononuclear cells of patients with metastatic colorectal cancer. The activated phenotype of MoDC/cDC2 and the increased release of pro-inflammatory cytokines and T-cell-recruiting chemokines resulting from NK cell/DC crosstalk should contribute to a more inflamed TME and may thus enhance the efficacy of T-cell-based therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...