Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 26(23): 6181-9, 2006 Jun 07.
Article in English | MEDLINE | ID: mdl-16763026

ABSTRACT

Large-conductance voltage- and Ca(2+)-activated K+ channels (BKCa) are involved in shaping spiking patterns in many neurons. Less is known about their role in mammalian inner hair cells (IHCs), mechanosensory cells with unusually large BKCa currents. These currents may be involved in shaping the receptor potential, implying crucial importance for the properties of afferent auditory signals. We addressed the function of BKCa by recording sound-induced responses of afferent auditory nerve (AN) fibers from mice with a targeted deletion of the pore-forming alpha-subunit of BKCa (BKalpha(-/-)) and comparing these with voltage responses of current-clamped IHCs. BKCa-mediated currents in IHCs were selectively abolished in BKalpha(-/-), whereas cochlear physiology was essentially normal with respect to cochlear sensitivity and frequency tuning.BKalpha(-/-) AN fibers showed deteriorated precision of spike timing, measured as an increased variance of first spike latency in response to tone bursts. This impairment could be explained by a slowed voltage response in the presynaptic IHC resulting from the reduced K+ conductance in the absence of BKCa. Maximum spike rates of AN fibers were reduced nearly twofold in BKalpha(-/-), contrasting with increased voltage responses of IHCs. In addition to presynaptic changes, which may be secondary to a modest depolarization of BKalpha(-/-) IHCs, this reduction in AN rates suggests a role of BKCa in postsynaptic AN neurons, which was supported by increased refractory periods. In summary, our results indicate an essential role of IHC BKCa channels for precise timing of high-frequency cochlear signaling as well as a function of BKCa in the primary afferent neuron.


Subject(s)
Acoustic Stimulation , Cochlear Nerve/physiology , Hair Cells, Auditory, Inner/physiology , Large-Conductance Calcium-Activated Potassium Channels/physiology , Nerve Fibers/physiology , Neurons, Afferent/physiology , Action Potentials , Animals , Cochlea/physiology , Cochlear Nerve/cytology , Differential Threshold , In Vitro Techniques , Large-Conductance Calcium-Activated Potassium Channels/genetics , Mice , Mice, Knockout , Patch-Clamp Techniques , Protein Isoforms/genetics , Protein Isoforms/physiology , Refractory Period, Electrophysiological , Time Factors
2.
J Am Soc Nephrol ; 17(5): 1275-82, 2006 May.
Article in English | MEDLINE | ID: mdl-16571783

ABSTRACT

K(+) secretion in the kidney and distal colon is a main determinant of K(+) homeostasis. This study investigated the identity of the relevant luminal secretory K(+) ion channel in distal colon. An Ussing chamber was used to measure ion transport in the recently generated BK channel-deficient (BK(-/-)) mice. BK(-/-) mice display a significant colonic epithelial phenotype with (1) lack of Ba(2+)-sensitive resting K(+) secretion, (2) absence of K(+) secretion stimulated by luminal P2Y(2) and P2Y(4) receptors, (3) absence of luminal Ca(2+) ionophore (A23187)-stimulated K(+) secretion, (4) reduced K(+) and increased Na(+) contents in feces, and (5) an increased colonic Na(+) absorption. In contrast, resting and uridine triphosphate (UTP)-stimulated K(+) secretion was not altered in mice that were deficient for the intermediate conductance Ca(2+)-activated K(+) channel SK4. BK channels localize to the luminal membrane of crypt, and reverse transcription-PCR results confirm the expression of the BK channel alpha-subunit in isolated distal colonic crypts. It is concluded that BK channels are the responsible K(+) channels for resting and stimulated Ca(2+)-activated K(+) secretion in mouse distal colon.


Subject(s)
Colon/metabolism , Ion Channel Gating/physiology , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Potassium/metabolism , Animals , Ion Transport/physiology , Large-Conductance Calcium-Activated Potassium Channels/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout
3.
Histochem Cell Biol ; 125(6): 725-41, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16362320

ABSTRACT

An antibody against the 442 carboxy-terminal amino acids of the BK channel alpha-subunit detects high immunoreactivity within the telencephalon in cerebral cortices, olfactory bulb, basal ganglia and hippocampus, while lower levels are found in basal forebrain regions and amygdala. Within the diencephalon, high density was found in nuclei of the ventral and dorsal thalamus and the medial habenular nucleus, and low density in the hypothalamus. The fasciculus retroflexus and its termination in the mesencephalic interpeduncular nucleus are prominently stained. Other mesencephalic expression sites are periaquaeductal gray and raphe nuclei. In the rhombencephalon, BK channels are enriched in the cerebellar cortex and in the locus coeruleus. Strong immunoreactivity is also contained in the vestibular nuclei, but not in cranial nerves and their intramedullary course of their roots. On the cellular level, BK channels show pre- and postsynaptic localizations, i.e., in somata, dendrites, axons and synaptic terminals.


Subject(s)
Brain Chemistry , Brain/metabolism , Large-Conductance Calcium-Activated Potassium Channels/analysis , Potassium Channels, Calcium-Activated/analysis , Animals , Antibodies/immunology , Immunohistochemistry , Large-Conductance Calcium-Activated Potassium Channels/genetics , Large-Conductance Calcium-Activated Potassium Channels/immunology , Mice , Mice, Mutant Strains , Tissue Distribution
4.
Circulation ; 112(1): 60-8, 2005 Jul 05.
Article in English | MEDLINE | ID: mdl-15867178

ABSTRACT

BACKGROUND: Abnormally elevated blood pressure is the most prevalent risk factor for cardiovascular disease. The large-conductance, voltage- and Ca2+-dependent K+ (BK) channel has been proposed as an important effector in the control of vascular tone by linking membrane depolarization and local increases in cytosolic Ca2+ to hyperpolarizing K+ outward currents. However, the BK channel may also affect blood pressure by regulating salt and fluid homeostasis, particularly by adjusting the renin-angiotensin-aldosterone system. METHODS AND RESULTS: Here we report that deletion of the pore-forming BK channel alpha subunit leads to a significant blood pressure elevation resulting from hyperaldosteronism accompanied by decreased serum K+ levels as well as increased vascular tone in small arteries. In smooth muscle from small arteries, deletion of the BK channel leads to a depolarized membrane potential, a complete lack of membrane hyperpolarizing spontaneous K+ outward currents, and an attenuated cGMP vasorelaxation associated with a reduced suppression of Ca2+ transients by cGMP. The high level of BK channel expression observed in wild-type adrenal glomerulosa cells, together with unaltered serum renin activities and corticotropin levels in mutant mice, suggests that the hyperaldosteronism results from abnormal adrenal cortical function in BK(-/-) mice. CONCLUSIONS: These results identify previously unknown roles of BK channels in blood pressure regulation and raise the possibility that BK channel dysfunction may underlie specific forms of hyperaldosteronism.


Subject(s)
Hyperaldosteronism/etiology , Hypertension/etiology , Large-Conductance Calcium-Activated Potassium Channels/physiology , Vasodilation , Adrenal Cortex/physiology , Animals , Arteries/physiology , Blood Pressure , Electrophysiology , Homeostasis , Large-Conductance Calcium-Activated Potassium Channels/deficiency , Mice , Mice, Knockout , Myocytes, Smooth Muscle/physiology , Potassium/blood , Vasoconstriction
5.
Proc Natl Acad Sci U S A ; 101(35): 12922-7, 2004 Aug 31.
Article in English | MEDLINE | ID: mdl-15328414

ABSTRACT

The large conductance voltage- and Ca2+-activated potassium (BK) channel has been suggested to play an important role in the signal transduction process of cochlear inner hair cells. BK channels have been shown to be composed of the pore-forming alpha-subunit coexpressed with the auxiliary beta1-subunit. Analyzing the hearing function and cochlear phenotype of BK channel alpha-(BKalpha-/-) and beta1-subunit (BKbeta1-/-) knockout mice, we demonstrate normal hearing function and cochlear structure of BKbeta1-/- mice. During the first 4 postnatal weeks also, BKalpha-/- mice most surprisingly did not show any obvious hearing deficits. High-frequency hearing loss developed in BKalpha-/- mice only from approximately 8 weeks postnatally onward and was accompanied by a lack of distortion product otoacoustic emissions, suggesting outer hair cell (OHC) dysfunction. Hearing loss was linked to a loss of the KCNQ4 potassium channel in membranes of OHCs in the basal and midbasal cochlear turn, preceding hair cell degeneration and leading to a similar phenotype as elicited by pharmacologic blockade of KCNQ4 channels. Although the actual link between BK gene deletion, loss of KCNQ4 in OHCs, and OHC degeneration requires further investigation, data already suggest human BK-coding slo1 gene mutation as a susceptibility factor for progressive deafness, similar to KCNQ4 potassium channel mutations.


Subject(s)
Hearing Loss/genetics , Potassium Channels/genetics , Animals , Calcium/metabolism , Cochlea/metabolism , Gene Deletion , Hair Cells, Auditory, Outer/abnormalities , Hearing Loss/metabolism , Immunohistochemistry , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits , Mice , Phenotype , Potassium Channels/metabolism
6.
Mol Plant Pathol ; 4(1): 31-41, 2003 Jan 01.
Article in English | MEDLINE | ID: mdl-20569360

ABSTRACT

SUMMARY Fungal hydrophobins are small hydrophobic proteins containing eight cysteine residues at conserved positions which have the ability to form amphipathic polymers. We have characterized a gene from the phytopathogenic ascomycete Claviceps purpurea, cpph1, which encodes a modular-type hydrophobin. It consists of five units, each showing a significant homology to class II hydrophobins. The units are separated by GN-repeat regions, which could form amphipathic alpha-helices; the amino terminus contains a glycine-rich region which could be involved in attaching the protein to the cell wall. The presence of long direct repeats within cpph1, and the high homology of the three internal modules suggest a recent generation of this gene from a tripartite precursor. Although sequencing of cDNA clones indicated that recombination could be mediated via the direct repeats, the majority of the transcripts appear to be full-sized. This was confirmed by Northern blot analysis, which showed the presence of a full-sized transcript in axenic culture. The high molecular weight pentahydrophobin was detected by Western blot analysis, indicating that CPPH1 is not processed into monomeric subunits. Targeted deletion of cpph1 did not lead to differences in morphology, growth rate, sporulation, or hydrophobicity of spores. Furthermore, the cpph1 deletion mutants showed no reduction in virulence on rye.

SELECTION OF CITATIONS
SEARCH DETAIL
...