Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 12: 744137, 2021.
Article in English | MEDLINE | ID: mdl-35087402

ABSTRACT

Tuberculosis (TB) is a disease of global importance that affects millions of people. Approximately a quarter of the world's population is currently infected with M. tuberculosis, and about 10% of those infected will develop into active disease, particularly immune compromised individuals. Helminthiasis is of global health importance, affecting over 2 billion people mostly in resource-poor countries. Co-infection with tuberculosis (TB) and helminths (worms) is an emerging global public health concern with both affecting about one-third of the global population. Chronic infection with helminths can result in impaired immune responses to TB as well as enhancing failure to TB therapy and BCG vaccination. Antimycobacterial and anthelmintic activities of the acetone extract and fractions of Psychotria capensis were evaluated, including their in vitro safety. In addition, the anti-inflammatory and immunomodulatory effect of the fractions and crude extract of P. capensis were assessed. Antimycobacterial activity of the extract and fractions was tested against four non-tuberculous mycobacteria (Mycobacterium smegmatis, M. fortuitum, M. aurum, M. bovis BCG) and pathogenic M. tuberculosis H37Rv while the Egg Hatch Assay (EHA) was used for the anthelmintic test on eggs of Haemonchus contortus. Cytotoxicity was determined against Vero kidney cells while in vitro immune modulation via cytokine production was determined on activated macrophages. The minimum inhibitory concentration (MIC) values of the Psychotria capensis acetone extract and fractions ranged from 39 to 1,250 µg/ml with the crude extract and hexane fraction having the best MIC values (both 39 µg/ml). In the EHA, the inhibitory concentration (IC50) ranged from 160 to 630 µg/ml with the hexane fraction having the best activity. The hexane and chloroform fractions were relatively non-toxic with LC50 values of 290 and 248 µg/ml respectively, while the acetone crude extract (64 µg/ml) and n-butanol fraction (71 µg/ml) were moderately toxic. The SI values (LC50/MIC) ranged from 0.1 to 7.4 with the hexane fraction having the highest value against M. smegmatis (7.4). The hexane fraction had the best dual anthelmintic and antimycobacterial activity. This fraction had the best NO inhibitory activity and was the least cytotoxic, indicating that its activity was not due to general metabolic toxicity, with 96.54% cell viability. Pro-inflammatory cytokines such as IL-12p70 were upregulated while IL-10 expression was inhibited by the extracts. Compounds were detected using GC-MS analysis, and in both the crude acetone extract and the hexane fraction was the diterpene neophytadiene, which has anti-inflammatory and antimicrobial activity. Finding alternative or complementary approaches to dealing with TB infections by, amongst other things, reducing the incidence of helminth infestations may lessen the burden of TB, contributing to slowing the spread of multi-drug resistance.

2.
BMC Complement Altern Med ; 19(1): 141, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31221162

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) remains an important global health issue but the gap between AMR and development of new antimicrobials is increasing. Plant extracts may have good activity per se or may be sources of effective antimicrobial compounds which can act against planktonic and/or biofilms of pathogens. We determined the antimicrobial efficacy and cytotoxicity of some under-investigated plants from the Myrtaceae family endemic to South Africa. The ability of the plant extracts to inhibit or destroy pre-formed bacterial biofilms was also determined. METHODS: Based on previous preliminary in vitro screening and on chemotaxonomy, nine species from the Myrtaceae family were selected. The antimicrobial activity of the crude acetone leaf extracts was determined against six common nosocomial pathogens, namely: Gram-positive bacteria (Bacillus cereus, Enterococcus faecalis, Staphylococcus aureus), Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella Typhimurium) using a two-fold serial microdilution assay with p-iodonitrotetrazolium violet as growth indicator. The number of antimicrobial compounds present in extracts was determined by bioautography. Cytotoxicity of extracts was determined against Vero kidney cells using a colorimetric tetrazolium-based assay. The total antibacterial activity (TAA) in ml/g and selectivity index (LC50/MIC) of the plant extracts were calculated. A modified crystal violet assay was used to determine the antibiofilm activity of the extracts. RESULTS: Syzygium legatii, Syzygium masukuense, and Syzygium species A had the best activities against Gram-negative and Gram-positive bacteria (MIC) values ranging from 0.04-0.08 mg/ml. Eugenia erythrophylla had the best MIC (0.02 mg/ml) against Bacillus cereus. Many extracts had relatively low cytotoxicity (LC50 > 20 µg/ml) leading to reasonable selectivity indices. Three leaf extracts (Syzygium masukuense, Syzygium species A, and Eugenia natalitia) were moderately cytotoxic (20 µg/ml < LC50 < 100 µg/ml). The plant extracts had a good capacity to reduce biofilm formation and good to poor potential to destroy pre-formed biofilms. CONCLUSIONS: The plant species examined in this study had varying degrees of antibacterial activity against bacterial planktonic and biofilm forms with some having good activity against both forms. Several of these selected species may be potential candidates for further investigation to isolate antimicrobial compounds and to determine the mechanism of activity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Plant Extracts/pharmacology , Syzygium/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/physiology , Lethal Dose 50 , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Leaves/chemistry , South Africa
3.
BMC Complement Altern Med ; 19(1): 108, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31117999

ABSTRACT

BACKGROUND: Tuberculosis is a deadly disease caused by Mycobacterium species. The use of medicinal plants is an ancient global practice for the treatment and prevention of diverse ailments including tuberculosis. The aim of this study was to isolate and characterize antimycobacterial compounds by bioassay-guided fractionation of the acetone leaf extract of Oxyanthus speciosus. METHODS: A two-fold serial microdilution method was used to determine the minimum inhibitory concentration (MIC) against mycobacteria. Cytotoxicity and nitric oxide inhibitory activity of the isolated compounds was determined to evaluate in vitro safety and potential anti-inflammatory activity. Intracellular efficacy of the crude extract against Mycobacterium-infected macrophages was also determined. RESULTS: Two compounds were isolated and identified as lutein (1) and rotundic acid (2). These had good antimycobacterial activity against the four mycobacteria tested with MIC values ranging from 0.013 to 0.1 mg/mL. Rotundic acid had some cytotoxicity against C3A human liver cells. Lutein was not cytotoxic at the highest tested concentration (200 µg/mL) and inhibited nitric oxide production in RAW 264.7 macrophages by 94% at a concentration of 25 µg/mL. The acetone crude extract (120 µg/mL) of O. speciosus had intracellular antimycobacterial activity, reducing colony forming units by more than 90%, displaying bactericidal efficacy in a dose and time-dependent manner. CONCLUSION: This study provides good proof of the presence of synergism between different compounds in extracts and fractions. It is also the first report of the antimycobacterial activity of lutein and rotundic acid isolated from Oxyanthus speciosus. The promising activity of the crude extract of O. speciosus both in vitro and intracellularly in an in vitro macrophage model suggests its potential for development as an anti- tuberculosis (TB) herbal medicine.


Subject(s)
Antitubercular Agents , Intracellular Space , Mycobacterium tuberculosis/drug effects , Plant Extracts , Rubiaceae/chemistry , Animals , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Cell Line , Humans , Intracellular Space/drug effects , Intracellular Space/microbiology , Lutein/chemistry , Lutein/pharmacology , Mice , Plant Extracts/chemistry , Plant Extracts/pharmacology , RAW 264.7 Cells , Triterpenes/chemistry , Triterpenes/pharmacology
4.
BMC Vet Res ; 15(1): 162, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31118023

ABSTRACT

BACKGROUND: Diarrhoea, a global economically important disease burden affecting swine and, especially piglets, is commonly caused by infection with entero-toxigenic E. coli (ETEC). Adherence of ETEC to porcine intestinal epithelial cells following infection, is necessary for its pathogenesis. While antimicrobials are commonly given as therapy or as feed additives for prophylaxis against microbial infections, the concern over increased levels of antimicrobial resistance necessitate the search for safe and effective alternatives in livestock feed. Attention is shifting to natural products including plants as suitable alternatives to antimicrobials. The activity of acetone crude leaf extracts of nine under-explored South African endemic plants from the Myrtaceae family with good antimicrobial activity were tested against pathogenic E. coli of porcine origin using a microplate serial dilution method. Bioautography, also with p-iodonitrotetrazolium violet as growth indicator was used to view the number of bioactive compounds in each extract. In vitro toxicity of extracts was determined against Caco-2 cells using the 3-(4,5-dimethythiazolyl-2)-2,5-diphenyltetrazolium bromide reduction assay. The antimicrobial susceptibility of E. coli isolates was tested on a panel of antimicrobials using the Kirby-Bauer agar diffusion method while the anti-adherence mechanism was evaluated using a Caco-2 cell enterocyte anti-adhesion model. RESULTS: The MIC of the extracts ranged from 0.07-0.14 mg/mL with S. legatii having the best mean MIC (0.05 mg/mL). Bioautography revealed at least two active bands in each plant extract. The 50% lethal concentration (LC50) values ranged between 0.03-0.66 mg/mL. Eugenia zeyheri least cytotoxic (LC50 = 0.66 mg/ml) while E. natalitia had the highest cytotoxicity (LC50 = 0.03 mg/mL). All the bacteria were completely resistant to doxycycline and colistin sulphate and many of the plant extracts significantly reduced adhesion of E. coli to Caco-2 cells. CONCLUSIONS: The extracts of the plants had good antibacterial activity as well as a protective role on intestinal epithelial cells against enterotoxigenic E. coli bacterial adhesion. This supports the potential use of these species in limiting infection causes by E. coli. Some of these plants or extracts may be useful as phytogenic feed additives but it has to be investigated by animal feed trials.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple/drug effects , Enterotoxigenic Escherichia coli/drug effects , Eugenia/chemistry , Plant Extracts/pharmacology , Syzygium/chemistry , Acetone/chemistry , Caco-2 Cells , Cell Survival/drug effects , Drug Resistance, Bacterial/drug effects , Humans , Lethal Dose 50 , Microbial Sensitivity Tests , Plant Extracts/toxicity , Plant Leaves/chemistry
5.
Front Pharmacol ; 10: 185, 2019.
Article in English | MEDLINE | ID: mdl-30890938

ABSTRACT

Tuberculosis (TB), a disease caused by microorganisms of the Mycobacterium tuberculosis complex, infects almost one-third of the world's population. The TB epidemic has been further exacerbated by the emergence of multi, extensively, and totally-drug-resistant (MDR, XDR, and TDRTB) strains. An effective immune response plays a crucial role in determining the establishment of TB infection. Therefore, the modulation of the immune system has been considered as a vital approach for the treatment or control of various immune-related diseases such as TB. In this study, the antimycobacterial, immunomodulatory, and apoptosis-inducing effects of six Rubiaceae species were evaluated. A twofold serial dilution method was used to determine the minimum inhibitory concentration values of the plant extracts. The effect of the extracts on the activity of 15-lipoxygenase was investigated. The levels of six different cytokines, IL-2, IL-4, IL-5, IL-10, IFN-γ, and TNF-α, were measured in LPS-activated U937 cell line while the apoptosis-inducing effect of the extracts was evaluated using an annexin V/PI assay using a flow cytometer. The results obtained revealed that all the six extracts tested had antimycobacterial activity against M. tuberculosis H37Rv, M. tuberculosis ATCC 25177, and Mycobacterium bovis ATCC 27299 strains, with MIC values ranging from 39 to 312 µg/mL. The extracts of Cremaspora triflora and Cephalanthus natalensis were the most active against M. tuberculosis (MIC = 39 µg/mL), followed by Pavetta lanceolata and Psychotria zombamontana against M. bovis (MIC = 78 µg/mL). The extracts of P. zombamontana and Psychotria capensis had remarkable IC50 values of 4.32 and 5.8 µg/mL, respectively, better than that of quercetin. The selected extracts promoted Th1/Th2 balances in an in vitro model at the tested concentration which may suggest the therapeutic value of the plant in diseases where inflammation is a significant factor such as TB. The addition of the crude extracts of C. triflora, P. capensis, and P. zombamontana at the tested concentrations to the cell culture medium induced apoptosis in a time- and dose-dependent manner. This interesting preliminary result generated from this study encourages further investigations of these extracts owing to the LOX-inhibitory effect, immunomodulatory, and apoptotic-inducing properties in addition to their antimycobacterial properties.

6.
BMC Complement Altern Med ; 18(1): 184, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29903008

ABSTRACT

BACKGROUND: Influenza infection is a major public health threat. The role of influenza A virus-induced inflammatory response in severe cases of this disease is widely recognized. Drug resistance and side effects of chemical treatments have been observed, resulting in increased interest in alternative use of herbal medications for prophylaxis against this infection. The South African medicinal plant, Rapanea melanophloeos (RM) (L.) Mez of the family Myrsinaceae was selected owing to its traditional use for the treatment of several diseases such as respiratory ailments and also previous preliminary studies of anti-influenza activity of its methanolic extract. The aim of this study was to investigate the immunomodulatory properties of a glycoside flavone isolated from RM against influenza A virus. METHODS: The non-cytotoxic concentration of the quercetin-3-O-α-L-rhamnopyranoside (Q3R) was determined by MTT assay and tested for activity against influenza A virus (IAV) in simultaneous, pre-penetration and post-penetration combination treatments over 1 h incubation on MDCK cells. The virus titer and viral load targeting NP and M2 viral genes were determined using HA and qPCR, respectively. TNF-α and IL-27 as pro- and anti-inflammatory cytokines were measured at RNA and protein levels by qPCR and ELISA, respectively. RESULTS: Quercetin-3-O-α-L-rhamnopyranoside at 150 µg/ml decreased the viral titer by 6 logs (p < 0.01) in the simultaneous procedure. The NP and M2 genes copy numbers as viral target genes, calculated based on the Ct values and standard formula, significantly decreased in simultaneous treatment (p < 0.01). The expression of cytokines was also considerably affected by the compound treatment. CONCLUSIONS: This is the first report of quercetin-3-O-α-L-rhamnopyranoside from RM and its immunomodulatory properties against influenza A virus. Further research will focus on detecting the specific mechanism of virus-host interactions.


Subject(s)
Antiviral Agents/pharmacology , Glycosides/pharmacology , Immunologic Factors/pharmacology , Influenza A virus/drug effects , Plant Extracts/chemistry , Primulaceae/chemistry , Quercetin/analogs & derivatives , Animals , Cytokines/analysis , Cytokines/genetics , Cytokines/metabolism , DNA Copy Number Variations/drug effects , Dogs , Influenza A virus/genetics , Madin Darby Canine Kidney Cells , Nucleocapsid Proteins , Quercetin/pharmacology , RNA-Binding Proteins/analysis , RNA-Binding Proteins/genetics , Viral Core Proteins/analysis , Viral Core Proteins/genetics , Viral Matrix Proteins/analysis , Viral Matrix Proteins/genetics
7.
BMC Complement Altern Med ; 16(1): 385, 2016 Oct 03.
Article in English | MEDLINE | ID: mdl-27716160

ABSTRACT

BACKGROUND: The Rubiaceae family has played a significant role in drug discovery by providing molecules with potential use as templates for the development of therapeutic drugs. This study was designed to study the in vitro synergistic effect of six Rubiaceae species in combination with a known anti-TB drug. The antioxidant and anti-inflammatory activity of these species were also evaluated to investigate additional benefits in antimycobacterial treatment. METHODS: The checkerboard method was used to determine the antimycobacterial synergistic activity of plant extracts combined with rifampicin. The antioxidant activity of extracts was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Anti-inflammatory activity via inhibition of nitric oxide (NO) production was performed in LPS-activated RAW 264.7 macrophages using the Griess assay. RESULTS: Combination of rifampicin with the crude extracts resulted in a 4 to 256-fold increase of activity of extracts. The crude extract of Cremaspora triflora produced the best synergistic effect with rifampicin, with a fractional inhibitory concentration (FIC) index of 0.08 against Mycobacterium aurum. Extracts of Psychotria zombamontana had the best antioxidant activity with an IC50 value of 1.77 µg/mL, lower than the IC50 of trolox and ascorbic acid (5.67 µg/mL and 4.66 µg/mL respectively). All the extracts tested inhibited nitric oxide (NO) production in a concentration dependent manner with the percentage of inhibition varying from 6.73 to 86.27 %. CONCLUSION: Some of the Rubiaceae species investigated have substantial in vitro synergistic effects with rifampicin and also good free radical scavenging ability and anti-inflammatory activity. These preliminary results warrant further study on these plants to determine if compounds isolated from these species could lead to the development of bioactive compounds that can potentiate the activity of rifampicin even against resistant mycobacteria.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Antitubercular Agents/pharmacology , Mycobacterium/drug effects , Plant Extracts/pharmacology , Rifampin/pharmacology , Rubiaceae/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Antitubercular Agents/chemistry , Cell Survival/drug effects , Drug Synergism , Mice , Microbial Viability/drug effects , Plant Extracts/chemistry , RAW 264.7 Cells , Rifampin/chemistry
8.
Phytother Res ; 29(7): 1004-10, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25857273

ABSTRACT

Tuberculosis (TB) caused by Mycobacterium tuberculosis remains an ongoing threat to human health. Many plant species contain antimycobacterial compounds, which may serve as template molecules for new anti-TB drugs. The Rubiaceae family is the largest family of trees in southern Africa, and preliminary evidence revealed antimycobacterial activity in several species of the genus, motivating further studies. Leaf extracts of 15 tree species from the Rubiaceae family were screened for antimycobacterial activity against pathogenic M. tuberculosis and non-pathogenic Mycobacterium smegmatis, Mycobacterium aurum and Mycobacterium bovis BCG (Bacillus Calmette-Guérin) using a twofold serial microdilution assay. Cytotoxicity was determined using a tetrazolium-based colorimetric assay against C3A liver cells and Vero kidney cells. Minimum inhibitory concentration values as low as 0.04 mg/mL against M. smegmatis and M. tuberculosis were recorded. Activity against M. aurum was the best predictor of activity against pathogenic M. tuberculosis (correlation coefficient = 0.9). Bioautography indicated at least 40 different antimycobacterial compounds in the extracts. Cytotoxicity of the extracts varied, and Oxyanthus speciosus had the most promising selectivity index values.


Subject(s)
Anti-Bacterial Agents/pharmacology , Mycobacterium/drug effects , Plant Extracts/pharmacology , Rubiaceae/chemistry , Africa, Southern , Animals , Cell Line , Chlorocebus aethiops , Humans , Microbial Sensitivity Tests , Mycobacterium bovis/drug effects , Mycobacterium smegmatis/drug effects , Mycobacterium tuberculosis/drug effects , Plant Leaves/chemistry , Trees/chemistry , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...