Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
mBio ; : e0197923, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38038448

ABSTRACT

IMPORTANCE: Enteropathogenic Escherichia coli (EPEC) infection is a significant cause of gastroenteritis, mainly in children. Therefore, studying the mechanisms of EPEC infection is an important research theme. EPEC modulates its host cell life by injecting via a type III secretion machinery cell death modulating effector proteins. For instance, while EspF and Map promote mitochondrial cell death, EspZ antagonizes cell death. We show that these effectors also control lysosomal exocytosis, i.e., the trafficking of lysosomes to the host cell plasma membrane. Interestingly, the capacity of these effectors to induce or protect against cell death correlates completely with their ability to induce LE, suggesting that the two processes are interconnected. Modulating host cell death is critical for establishing bacterial attachment to the host and subsequent dissemination. Therefore, exploring the modes of LE involvement in host cell death is crucial for elucidating the mechanisms underlying EPEC infection and disease.

2.
Int J Mol Sci ; 24(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37569283

ABSTRACT

Diverse extracellular and intracellular cues activate mammalian mitogen-activated protein kinases (MAPKs). Canonically, the activation starts at cell surface receptors and continues via intracellular MAPK components, acting in the host cell nucleus as activators of transcriptional programs to regulate various cellular activities, including proinflammatory responses against bacterial pathogens. For instance, binding host pattern recognition receptors (PRRs) on the surface of intestinal epithelial cells to bacterial pathogen external components trigger the MAPK/NF-κB signaling cascade, eliciting cytokine production. This results in an innate immune response that can eliminate the bacterial pathogen. However, enteric bacterial pathogens evolved sophisticated mechanisms that interfere with such a response by delivering virulent proteins, termed effectors, and toxins into the host cells. These proteins act in numerous ways to inactivate or activate critical components of the MAPK signaling cascades and innate immunity. The consequence of such activities could lead to successful bacterial colonization, dissemination, and pathogenicity. This article will review enteric bacterial pathogens' strategies to modulate MAPKs and host responses. It will also discuss findings attempting to develop anti-microbial treatments by targeting MAPKs.


Subject(s)
Mitogen-Activated Protein Kinases , Signal Transduction , Animals , Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System , Immunity, Innate , NF-kappa B/metabolism , Bacteria/metabolism , Enterobacteriaceae , Mammals/metabolism
3.
mBio ; 14(4): e0075223, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37341483

ABSTRACT

EspZ and Tir are essential virulence effectors of enteropathogenic Escherichia coli (EPEC). EspZ, the second translocated effector, has been suggested to antagonize host cell death induced by the first translocated effector, Tir (translocated intimin receptor). Another characteristic of EspZ is its localization to host mitochondria. However, studies that explored the mitochondrial localization of EspZ have examined the ectopically expressed effector and not the more physiologically relevant translocated effector. Here, we confirmed the membrane topology of translocated EspZ at infection sites and the involvement of Tir in confining its localization to these sites. Unlike the ectopically expressed EspZ, the translocated EspZ did not colocalize with mitochondrial markers. Moreover, no correlation has been found between the capacity of ectopically expressed EspZ to target mitochondria and the ability of translocated EspZ to protect against cell death. Translocated EspZ may have to some extent diminished F-actin pedestal formation induced by Tir but has a marked effect on protecting against host cell death and on promoting host colonization by the bacteria. Taken together, our results suggest that EspZ plays an essential role in facilitating bacterial colonization, likely by antagonizing cell death mediated by Tir at the onset of bacterial infection. This activity of EspZ, which occurs by targeting host membrane components at infection sites, and not mitochondria, may contribute to successful bacterial colonization of the infected intestine. IMPORTANCE EPEC is an important human pathogen that causes acute infantile diarrhea. EspZ is an essential virulence effector protein translocated from the bacterium into the host cells. Detailed knowledge of its mechanisms of action is, therefore, critical for better understanding the EPEC disease. We show that Tir, the first translocated effector, confines the localization of EspZ, the second translocated effector, to infection sites. This activity is important for antagonizing the pro-cell death activity conferred by Tir. Moreover, we show that translocated EspZ leads to effective bacterial colonization of the host. Hence, our data suggest that translocated EspZ is essential because it confers host cell survival to allow bacterial colonization at an early stage of bacterial infection. It performs these activities by targeting host membrane components at infection sites. Identifying these targets is critical for elucidating the molecular mechanism underlying the EspZ activity and the EPEC disease.


Subject(s)
Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Cell Adhesion , Cell Death , Humans , Cell Line, Tumor
4.
Gut Microbes ; 14(1): 2130657, 2022.
Article in English | MEDLINE | ID: mdl-36219160

ABSTRACT

Enteropathogenic Escherichia coli are bacterial pathogens that colonize the gut and cause severe diarrhea in humans. Upon intimate attachment to the intestinal epithelium, these pathogens translocate via a type III secretion system virulent proteins, termed effectors, into the host cells. These effectors manipulate diverse host cell organelles and functions for the pathogen's benefit. However, the precise mechanisms underlying their activities are not fully understood despite intensive research. EspH, a critical effector protein, has been previously reported to disrupt the host cell actin cytoskeleton by suppressing RhoGTPase guanine exchange factors. However, native host proteins targeted by EspH to mediate these activities remained unknown. Here, we identified the active Bcr related (ABR), a protein previously characterized to possess dual Rho guanine nucleotide exchange factor and GTPase activating protein (GAP) domains, as a native EspH interacting partner. These interactions are mediated by the effector protein's C-terminal 38 amino acid segment. The effector primarily targets the GAP domain of ABR to suppress Rac1 and Cdc42, host cell cytotoxicity, bacterial invasion, and filopodium formation at infection sites. Knockdown of ABR expression abolished the ability of EspH to suppress Rac1, Cdc42. Our studies unravel a novel mechanism by which host RhoGTPases are hijacked by bacterial effectors.


Subject(s)
Escherichia coli Proteins , Gastrointestinal Microbiome , Amino Acids , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , GTPase-Activating Proteins/genetics , Guanine , Humans , Type III Secretion Systems
5.
Cell Microbiol ; 23(9): e13352, 2021 09.
Article in English | MEDLINE | ID: mdl-33960116

ABSTRACT

A type III secretion system (T3SS) is used by Gram-negative bacterial pathogens to secrete and translocate a battery of proteins, termed effectors, from the bacteria directly into the host cells. These effectors, which are thought to play a key role in bacterial virulence, hijack and modify the activity of diverse host cell organelles, including mitochondria. Mitochondria-the energy powerhouse of the cell-are important cell organelles that play role in numerous critical cellular processes, including the initiation of apoptosis and the induction of innate immunity. Therefore, it is not surprising that pathogenic bacteria use mitochondrially targeted effectors to control host cell death and immunity pathways. Surprisingly, however, we found that despite their importance, only a limited number of type III secreted effectors have been characterised to target host mitochondria, and the mechanisms underlying their mitochondrial activity have not been sufficiently analysed. These include effectors secreted by the enteric attaching and effacing (A/E), Salmonella and Shigella bacterial pathogens. Here we give an overview of key findings, present gaps in knowledge and hypotheses concerning the mode by which these type III secreted effectors control the host and the bacterial cell life (and death) through targeting mitochondria.


Subject(s)
Bacterial Proteins , Shigella , Gram-Negative Bacteria , Mitochondria , Type III Secretion Systems
6.
mBio ; 11(5)2020 09 15.
Article in English | MEDLINE | ID: mdl-32934081

ABSTRACT

The ability of diarrheagenic bacterial pathogens, such as enteropathogenic Escherichia coli (EPEC), to modulate the activity of mitogen-activated protein kinases (MAPKs) and cell survival has been suggested to benefit bacterial colonization and infection. However, our understanding of the mechanisms by which EPEC modulate these functions is incomplete. In this study, we show that the EPEC type III secreted effector Map stimulates the sheddase activity of the disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and the ERK and p38 MAPK signaling cascades. Remarkably, all these activities were dependent upon the ability of Map to target host mitochondria, mainly via its mitochondrial toxicity region (MTR). Map targeting of mitochondria disrupted the mitochondrial membrane potential, causing extrusion of mitochondrial Ca2+ into the host cell cytoplasm. We also found that Map targeting of mitochondria is essential for triggering host cell apoptosis. Based on these findings, we propose a model whereby Map imported into mitochondria causes mitochondrial dysfunction and Ca2+ efflux into the host cytoplasm. Since Ca2+ has been reported to promote ADAM10 activation, the acute elevation of Ca2+ in the cytoplasm may stimulate the ADAM10 sheddase activity, resulting in the release of epidermal growth factors that stimulate the ERK signaling cascade. As p38 activity is also Ca2+ sensitive, elevation in cytoplasmic Ca2+ may independently also activate p38. We hypothesize that Map-dependent MAPK activation, combined with Map-mediated mitochondrial dysfunction, evokes mitochondrial host cell apoptosis, potentially contributing to EPEC colonization and infection of the gut.IMPORTANCE Enteropathogenic E. coli (EPEC) is an important human diarrhea-causing bacterium. The pathogenic effects of EPEC largely depend upon its ability to inject a series of proteins, termed effectors, into the host cells. One such effector is the mitochondrion-associated protein (Map). Map has been shown to induce actin-rich projections (i.e., filopodia) on the infected cell surface and activate a Rho GTPase enzyme termed Cdc42. Nonetheless, although most injected Map localizes to host mitochondria, its functions in the mitochondria remain unknown. Here, we show that Map targeting of mitochondria stimulates the disruption of mitochondrial membrane potential to induce Ca2+ efflux into the host cytoplasm. The efflux stimulates the activity of a protein termed ADAM10, which induces activation of a mitogen-activated protein kinase cascade leading to host cell apoptosis. As apoptosis plays a central role in host-pathogen interactions, our findings provide novel insights into the functions of mitochondrial Map in promoting the EPEC disease.


Subject(s)
ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Apoptosis , Calcium/metabolism , Enteropathogenic Escherichia coli/metabolism , Host-Pathogen Interactions , Membrane Proteins/metabolism , Mitochondria/physiology , Mitogen-Activated Protein Kinases/metabolism , ADAM10 Protein/genetics , Amyloid Precursor Protein Secretases/genetics , Biological Transport , Caco-2 Cells , Enteropathogenic Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , HeLa Cells , Humans , Membrane Proteins/genetics , Mitogen-Activated Protein Kinases/genetics , Protein Transport , Signal Transduction
7.
PLoS Pathog ; 15(6): e1007851, 2019 06.
Article in English | MEDLINE | ID: mdl-31242273

ABSTRACT

Enteropathogenic E. coli (EPEC) is an extracellular diarrheagenic human pathogen which infects the apical plasma membrane of the small intestinal enterocytes. EPEC utilizes a type III secretion system to translocate bacterial effector proteins into its epithelial hosts. This activity, which subverts numerous signaling and membrane trafficking pathways in the infected cells, is thought to contribute to pathogen virulence. The molecular and cellular mechanisms underlying these events are not well understood. We investigated the mode by which EPEC effectors hijack endosomes to modulate endocytosis, recycling and transcytosis in epithelial host cells. To this end, we developed a flow cytometry-based assay and imaging techniques to track endosomal dynamics and membrane cargo trafficking in the infected cells. We show that type-III secreted components prompt the recruitment of clathrin (clathrin and AP2), early (Rab5a and EEA1) and recycling (Rab4a, Rab11a, Rab11b, FIP2, Myo5b) endocytic machineries to peripheral plasma membrane infection sites. Protein cargoes, e.g. transferrin receptors, ß1 integrins and aquaporins, which exploit the endocytic pathways mediated by these machineries, were also found to be recruited to these sites. Moreover, the endosomes and cargo recruitment to infection sites correlated with an increase in cargo endocytic turnover (i.e. endocytosis and recycling) and transcytosis to the infected plasma membrane. The hijacking of endosomes and associated endocytic activities depended on the translocated EspF and Map effectors in non-polarized epithelial cells, and mostly on EspF in polarized epithelial cells. These data suggest a model whereby EPEC effectors hijack endosomal recycling mechanisms to mislocalize and concentrate host plasma membrane proteins in endosomes and in the apically infected plasma membrane. We hypothesize that these activities contribute to bacterial colonization and virulence.


Subject(s)
Cell Membrane/metabolism , Endocytosis , Endosomes/metabolism , Enteropathogenic Escherichia coli/metabolism , Escherichia coli Infections/metabolism , Membrane Proteins/metabolism , Cell Membrane/microbiology , Cell Membrane/pathology , Endosomes/microbiology , Endosomes/pathology , Enteropathogenic Escherichia coli/pathogenicity , Escherichia coli Infections/pathology , HeLa Cells , Humans
8.
Infect Immun ; 86(10)2018 10.
Article in English | MEDLINE | ID: mdl-30037792

ABSTRACT

Enteropathogenic Escherichia coli (EPEC) belongs to a group of enteric human pathogens known as attaching-and-effacing (A/E) pathogens, which utilize a type III secretion system (T3SS) to translocate a battery of effector proteins from their own cytoplasm into host intestinal epithelial cells. Here we identified EspH to be an effector that prompts the recruitment of the tetraspanin CD81 to infection sites. EspH was also shown to be an effector that suppresses the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (Erk) signaling pathway at longer infection times. The inhibitory effect was abrogated upon deletion of the last 38 amino acids located at the C terminus of the protein. The efficacy of EspH-dependent Erk suppression was higher in CD81-deficient cells, suggesting that CD81 may act as a positive regulator of Erk, counteracting Erk suppression by EspH. EspH was found within CD81 microdomains soon after infection but was largely excluded from these domains at a later time. Based on our results, we propose a mechanism whereby CD81 is initially recruited to infection sites in response to EspH translocation. At a later stage, EspH moves out of the CD81 clusters to facilitate effective Erk inhibition. Moreover, EspH selectively inhibits the tumor necrosis factor alpha (TNF-α)-induced Erk signaling pathway. Since Erk and TNF-α have been implicated in innate immunity and cell survival, our studies suggest a novel mechanism by which EPEC suppresses these processes to promote its own colonization and survival in the infected gut.


Subject(s)
Enteropathogenic Escherichia coli/metabolism , Escherichia coli Infections/metabolism , Escherichia coli Proteins/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Tetraspanin 28/metabolism , Adolescent , Enteropathogenic Escherichia coli/genetics , Escherichia coli Infections/enzymology , Escherichia coli Infections/genetics , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Extracellular Signal-Regulated MAP Kinases/genetics , Female , Host-Pathogen Interactions , Humans , Intestines/microbiology , Intestines/pathology , Male , Protein Domains , Signal Transduction , Tetraspanin 28/chemistry , Tetraspanin 28/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
9.
Cell Mol Gastroenterol Hepatol ; 5(3): 420-421, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29675455
10.
Opt Express ; 25(11): 12131-12143, 2017 May 29.
Article in English | MEDLINE | ID: mdl-28786571

ABSTRACT

Force controlled optical imaging of membranes of living cells is demonstrated. Such imaging has been extended to image membrane potential changes to demonstrate that live cell imaging has been achieved. To accomplish this advance, limitations inherent in atomic force microscopy (AFM) since its inception in 1986 [G. Binnig, C. F. Quate, and C. Gerber, "Atomic Force Microscope," Phys. Rev. Lett. 56, 930-933 (1986).] had to be overcome. The advances allow for live cell imaging of a whole genre of functional biological imaging with stiff (1-10N/m) scanned probe imaging cantilevers. Even topographic imaging of fine cell protrusions, such as microvilli, has been accomplished with such cantilevers. Similar topographic imaging has only recently been demonstrated with the standard soft (0.05N/m) cantilevers that are generally required for live cell imaging. The progress reported here demonstrates both ultrasensitive AFM (~100pN), capable of topographic imaging of even microvilli protruding from cell membranes and new functional applications that should have a significant impact on optical and other approaches in biological imaging of living systems and ultrasoft materials.

11.
Open Biol ; 4(7)2014 Jul.
Article in English | MEDLINE | ID: mdl-25056286

ABSTRACT

GLUT2 is a facilitative glucose transporter, expressed in polarized epithelial cells of the liver, intestine, kidney and pancreas, where it plays a critical role in glucose homeostasis. Together with SGLT1/2, it mediates glucose absorption in metabolic epithelial tissues, where it can be translocated apically upon high glucose exposure. To track the subcellular localization and dynamics of GLUT2, we created an mCherry-hGLUT2 fusion protein and expressed it in multicellular kidney cysts, a major site of glucose reabsorption. Live imaging of GLUT2 enabled us to avoid the artefactual localization of GLUT2 in fixed cells and to confirm the apical GLUT2 model. Live cell imaging showed a rapid 15 ± 3 min PKC-dependent basal-to-apical translocation of GLUT2 in response to glucose stimulation and a fourfold slower basolateral translocation under starvation. These results mark the physiological importance of responding quickly to rising glucose levels. Importantly, we show that phloretin, an apple polyphenol, inhibits GLUT2 translocation in both directions, suggesting that it exerts its effect by PKC inhibition. Subcellular localization studies demonstrated that GLUT2 is endocytosed through a caveolae-dependent mechanism, and that it is at least partly recovered in Rab11A-positive recycling endosome. Our work illuminates GLUT2 dynamics, providing a platform for drug development for diabetes and hyperglycaemia.


Subject(s)
Epithelial Cells/cytology , Glucose Transporter Type 2/analysis , Glucose Transporter Type 2/metabolism , Glucose/metabolism , Kidney/cytology , Optical Imaging/methods , Animals , Cell Line , Dogs , Endocytosis , Epithelial Cells/metabolism , Glucose Transporter Type 2/genetics , Humans , Kidney/metabolism , Luminescent Proteins/analysis , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Fluorescence/methods , Protein Transport , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Red Fluorescent Protein
12.
PLoS One ; 8(10): e78431, 2013.
Article in English | MEDLINE | ID: mdl-24194932

ABSTRACT

Enteropathogenic Escherichia coli (EPEC) is an important, generally non-invasive, bacterial pathogen that causes diarrhea in humans. The microbe infects mainly the enterocytes of the small intestine. Here we have applied our newly developed infrared surface plasmon resonance (IR-SPR) spectroscopy approach to study how EPEC infection affects epithelial host cells. The IR-SPR experiments showed that EPEC infection results in a robust reduction in the refractive index of the infected cells. Assisted by confocal and total internal reflection microscopy, we discovered that the microbe dilates the intercellular gaps and induces the appearance of fluid-phase-filled pinocytic vesicles in the lower basolateral regions of the host epithelial cells. Partial cell detachment from the underlying substratum was also observed. Finally, the waveguide mode observed by our IR-SPR analyses showed that EPEC infection decreases the host cell's height to some extent. Together, these observations reveal novel impacts of the pathogen on the host cell architecture and endocytic functions. We suggest that these changes may induce the infiltration of a watery environment into the host cell, and potentially lead to failure of the epithelium barrier functions. Our findings also indicate the great potential of the label-free IR-SPR approach to study the dynamics of host-pathogen interactions with high spatiotemporal sensitivity.


Subject(s)
Enteropathogenic Escherichia coli/pathogenicity , Epithelial Cells/cytology , Epithelial Cells/microbiology , Escherichia coli Infections/physiopathology , Host-Pathogen Interactions/physiology , Surface Plasmon Resonance/methods , Animals , Cell Adhesion/physiology , Cell Culture Techniques , Cell Size , Dogs , Endocytosis/physiology , Infrared Rays , Madin Darby Canine Kidney Cells , Microscopy, Confocal , Refractometry
13.
J Biomed Opt ; 17(8): 081409-1, 2012 Aug.
Article in English | MEDLINE | ID: mdl-23224170

ABSTRACT

Cell morphology is often used as a valuable indicator of the physical condition and general status of living cells. We demonstrate a noninvasive method for morphological characterization of adherent cells. We measure infrared reflectivity spectrum at oblique angle from living cells cultured on thin Au film, and utilize the unique properties of the confined infrared waves (i.e., surface plasmon and guided modes) traveling inside the cell layer. The propagation of these waves strongly depends on cell morphology and connectivity. By tracking the resonant wavelength and attenuation of the surface plasmon and guided modes we measure the kinetics of various cellular processes such as (i) cell attachment and spreading on different substrata, (ii) modulation of the outer cell membrane with chlorpromazine, and (iii) formation of intercellular junctions associated with progressive cell polarization. Our method enables monitoring of submicron variations in cell layer morphology in real-time, and in the label-free manner.


Subject(s)
Biosensing Techniques/instrumentation , Cell Adhesion/physiology , Cell Polarity/physiology , Cell Separation/instrumentation , Flow Cytometry/instrumentation , Spectrophotometry, Infrared/instrumentation , Surface Plasmon Resonance/instrumentation , Animals , Cell Size , Dogs , Equipment Design , Equipment Failure Analysis , Madin Darby Canine Kidney Cells
14.
PLoS One ; 7(10): e48454, 2012.
Article in English | MEDLINE | ID: mdl-23119025

ABSTRACT

We demonstrate that a live epithelial cell monolayer can act as a planar waveguide. Our infrared reflectivity measurements show that highly differentiated simple epithelial cells, which maintain tight intercellular connectivity, support efficient waveguiding of the infrared light in the spectral region of 1.4-2.5 µm and 3.5-4 µm. The wavelength and the magnitude of the waveguide mode resonances disclose quantitative dynamic information on cell height and cell-cell connectivity. To demonstrate this we show two experiments. In the first one we trace in real-time the kinetics of the disruption of cell-cell contacts induced by calcium depletion. In the second one we show that cell treatment with the PI3-kinase inhibitor LY294002 results in a progressive decrease in cell height without affecting intercellular connectivity. Our data suggest that infrared waveguide spectroscopy can be used as a novel bio-sensing approach for studying the morphology of epithelial cell sheets in real-time, label-free manner and with high spatial-temporal resolution.


Subject(s)
Biosensing Techniques , Epithelial Cells/cytology , Spectroscopy, Fourier Transform Infrared , Animals , Calcium/metabolism , Cell Culture Techniques , Cell Line , Enzyme Inhibitors/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Phosphoinositide-3 Kinase Inhibitors
15.
Gut Microbes ; 3(3): 267-71, 2012.
Article in English | MEDLINE | ID: mdl-22572833

ABSTRACT

Type IV pili (Tfp) play a primary role in mediating the adherence of pathogenic bacteria to their hosts. The pilus filament can retract with an immense force. However, the role of this activity in microbial pathogenesis has not been rigorously explored. Experiments performed on volunteers suggested that the retraction capacity of enteropathogenic Escherichia coli (EPEC) Tfp is required for full virulence. Here we review our recent study(1) in which we showed that the retraction capacity of the EPEC Tfp facilitates tight-junction disruption and actin-rich pedestal formation by promoting efficient bacterial protein effector translocation into epithelial host cells. We also present new data using live imaging confocal microscopy suggesting that EPEC adheres to monolayers in microcolonies and that Tfp retraction facilitates significant changes in the microcolony shape, which may be critical for efficient effector delivery. Our studies hence suggest novel insights into the role of pili retraction in EPEC pathogenesis.


Subject(s)
Bacterial Adhesion , Enteropathogenic Escherichia coli/pathogenicity , Epithelial Cells/microbiology , Fimbriae, Bacterial/metabolism , Tight Junctions/microbiology , Virulence Factors/metabolism , Animals , Cell Line , Escherichia coli Proteins/metabolism , Humans , Microscopy , Protein Transport , Virulence
16.
Mol Biol Cell ; 22(14): 2436-47, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21613538

ABSTRACT

Enteropathogenic Escherichia coli (EPEC) is an important human pathogen that causes acute infantile diarrhea. The type IV bundle-forming pili (BFP) of typical EPEC strains are dynamic fibrillar organelles that can extend out and retract into the bacterium. The bfpF gene encodes for BfpF, a protein that promotes pili retraction. The BFP are involved in bacterial autoaggregation and in mediating the initial adherence of the bacterium with its host cell. Importantly, BFP retraction is implicated in virulence in experimental human infection. How pili retraction contributes to EPEC pathogenesis at the cellular level remains largely obscure, however. In this study, an effort has been made to address this question using engineered EPEC strains with induced BFP retraction capacity. We show that the retraction is important for tight-junction disruption and, to a lesser extent, actin-rich pedestal formation by promoting efficient translocation of bacterial protein effectors into the host cells. A model is proposed whereby BFP retraction permits closer apposition between the bacterial and the host cell surfaces, thus enabling timely and effective introduction of bacterial effectors into the host cell via the type III secretion apparatus. Our studies hence suggest novel insights into the involvement of pili retraction in EPEC pathogenesis.


Subject(s)
Enteropathogenic Escherichia coli/pathogenicity , Escherichia coli Infections/microbiology , Fimbriae, Bacterial/physiology , Animals , Arabinose/metabolism , Caco-2 Cells , Cell Line , Diarrhea, Infantile/microbiology , Dogs , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Fimbriae, Bacterial/metabolism , HeLa Cells , Humans , Infant, Newborn , Phosphorylation , Tyrosine/metabolism
17.
J Virol ; 85(2): 946-56, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21068255

ABSTRACT

We hypothesized that ADP-ribosylation factor 1 (Arf1) plays an important role in the biogenesis and maintenance of infectious hepatitis C virus (HCV). Huh7.5 cells, in which HCV replicates and produces infectious viral particles, were exposed to brefeldin A or golgicide A, pharmacological inhibitors of Arf1 activation. Treatment with these agents caused a reduction in viral RNA levels, the accumulation of infectious particles within the cells, and a reduction in the levels of these particles in the extracellular medium. Fluorescence analyses showed that the viral nonstructural (NS) proteins NS5A and NS3, but not the viral structural protein core, shifted their localization from speckle-like structures in untreated cells to the rims of lipid droplets (LDs) in treated cells. Using pulldown assays, we showed that ectopic overexpression of NS5A in Huh7 cells reduces the levels of GTP-Arf1. Downregulation of Arf1 expression by small interfering RNA (siRNA) decreased both the levels of HCV RNA and the production of infectious viral particles and altered the localization of NS5A to the peripheries of LDs. Together, our data provide novel insights into the role of Arf1 in the regulation of viral RNA replication and the production of infectious HCV.


Subject(s)
ADP-Ribosylation Factor 1/metabolism , Hepacivirus/physiology , Virus Replication , ADP-Ribosylation Factor 1/antagonists & inhibitors , Brefeldin A/pharmacology , Cell Line , Enzyme Inhibitors/pharmacology , Gene Knockdown Techniques , Hepatocytes/virology , Humans , Pyridines/pharmacology , Quinolines/pharmacology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Viral Nonstructural Proteins/metabolism
18.
Biophys J ; 99(12): 4028-36, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21156146

ABSTRACT

The development of novel technologies capable of monitoring the dynamics of cell-cell and cell-substrate interactions in real time and a label-free manner is vital for gaining deeper insights into these most fundamental cellular processes. However, the label-free technologies available today provide only limited information on these processes. Here, we report a new (to our knowledge) infrared surface plasmon resonance (SPR)-based methodology that can resolve distinct phases of cell-cell and cell-substrate adhesion of polarized Madin Darby canine kidney epithelial cells. Due to the extended penetration depth of the infrared SP wave, the dynamics of cell adhesion can be detected with high accuracy and high temporal resolution. Analysis of the temporal variation of the SPR reflectivity spectrum revealed the existence of multiple phases in epithelial cell adhesion: initial contact of the cells with the substrate (cell deposition), cell spreading, formation of intercellular contacts, and subsequent generation of cell clusters. The final formation of a continuous cell monolayer could also be sensed. The SPR measurements were validated by optical microscopy imaging. However, in contrast to the SPR method, the optical analyses were laborious and less quantitative, and hence provided only limited information on the dynamics and phases of cell adhesion.


Subject(s)
Cell Communication , Epithelial Cells/cytology , Spectroscopy, Fourier Transform Infrared/methods , Surface Plasmon Resonance/methods , Animals , Cell Movement , Cell Shape , Cells, Cultured , Dogs , Surface Properties , Time Factors
19.
Cell Microbiol ; 12(4): 489-505, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-19912240

ABSTRACT

Enterohaemorrhagic Escherichia coli and enteropathogenic E. coli are enteropathogens characterized by their ability to induce the host cell to form actin-rich structures, termed pedestals. A type III secretion system, through which the pathogens deliver effector proteins into infected host cells, is essential for their virulence and pedestal formation. Enterohaemorrhagic E. coli encodes two similar effectors, EspM1 and EspM2, which activate the RhoA signalling pathway and induce the formation of stress fibres upon infection of host cells. We confirm these observations and in addition show that EspM inhibits the formation of actin pedestals. Moreover, we show that translocation of EspM into polarized epithelial cells induces dramatic changes in the tight junction localization and in the morphology and architecture of infected polarized monolayers. These changes are manifested by altered localization of the tight junctions and 'bulging out' morphology of the cells. Surprisingly, despite the dramatic changes in their architecture, the cells remain alive and the epithelial monolayer maintains a normal barrier function. Taken together, our results show that the EspM effectors inhibit pedestal formation and induce tight junction mislocalization as well as dramatic changes in the architecture of the polarized monolayer.


Subject(s)
Enterohemorrhagic Escherichia coli/pathogenicity , Enteropathogenic Escherichia coli/pathogenicity , Epithelial Cells/microbiology , Epithelial Cells/ultrastructure , Escherichia coli Proteins/physiology , Virulence Factors/physiology , Cell Line , Cell Survival , Humans , Stress Fibers/metabolism , Tight Junctions
20.
Biophys J ; 97(4): 1003-12, 2009 Aug 19.
Article in English | MEDLINE | ID: mdl-19686647

ABSTRACT

We report on the application of surface plasmon resonance (SPR), based on Fourier transform infrared spectroscopy in the mid-infrared wavelength range, for real-time and label-free sensing of transferrin-induced endocytic processes in human melanoma cells. The evanescent field of the mid-infrared surface plasmon penetrates deep into the cell, allowing highly sensitive SPR measurements of dynamic processes occurring at significant cellular depths. We monitored in real-time, infrared reflectivity spectra in the SPR regime from living cells exposed to human transferrin (Tfn). We show that although fluorescence microscopy measures primarily Tfn accumulation in recycling endosomes located deep in the cell's cytoplasm, the SPR technique measures mainly Tfn-mediated formation of early endocytic organelles located in close proximity to the plasma membrane. Our SPR and fluorescence data are very well described by a kinetic model of Tfn endocytosis, suggested previously in similar cell systems. Hence, our SPR data provide further support to the rather controversial ability of Tfn to stimulate its own endocytosis. Our analysis also yields what we believe is novel information on the role of membrane cholesterol in modulating the kinetics of endocytic vesicle biogenesis and consumption.


Subject(s)
Endocytosis/drug effects , Melanoma/metabolism , Models, Biological , Spectroscopy, Fourier Transform Infrared/methods , Surface Plasmon Resonance/methods , Transferrin/pharmacology , Transport Vesicles/metabolism , Cell Line, Tumor , Computer Simulation , Humans , Transport Vesicles/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...