Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
PLoS One ; 17(9): e0274896, 2022.
Article in English | MEDLINE | ID: mdl-36126072

ABSTRACT

Skin cancer is the most common type of cancer in many parts of the world. As skin cancers start as skin lesions, it is important to identify precancerous skin lesions early. In this paper we propose an image based skin lesion identification to classify seven different classes of skin lesions. First, Multi Resolution Empirical Mode Decomposition (MREMD) is used to decompose each skin lesion image into a few Bidimensional intrinsic mode functions (BIMF). MREMD is a simplified bidimensional empirical mode decomposition (BEMD) that employs downsampling and upsampling (interpolation) in the upper and lower envelope formation to speed up the decomposition process. A few BIMFs are extracted from the image using MREMD. The next step is to locate the lesion or the region of interest (ROI) in the image using active contour. Then Local Binary Pattern (LBP) is applied to the ROI of the image and its first BIMF to extract a total of 512 texture features from the lesion area. In the training phase, texture features of seven different classes of skin lesions are used to train an Artificial Neural Network (ANN) classifier. Altogether, 490 images from HAM10000 dataset are used to train the ANN. Then the accuracy of the approach is evaluated using 315 test images that are different from the training images. The test images are taken from the same dataset and each test image contains one type of lesion from the seven types that are classified. From each test image, 512 texture features are extracted from the lesion area and introduced to the classifier to determine its class. The proposed method achieves an overall classification rate of 98.9%.


Subject(s)
Skin Diseases , Skin Neoplasms , Algorithms , Humans , Neural Networks, Computer , Skin , Skin Diseases/diagnostic imaging , Skin Neoplasms/diagnostic imaging
2.
Front Optoelectron ; 15(1): 28, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-36637608

ABSTRACT

A stable mode-locked laser was demonstrated using a newly developed zinc phthalocyanine (ZnPc) thin film as passive saturable absorber (SA) in ytterbium-doped fiber laser (YDFL). The ZnPc thin film was obtained using a casting method and then inserted between the two fiber ferrules of a YDFL ring cavity to generate mode-locked pulses. The resulting pulsed laser operated at a wavelength of 1034.5 nm having a repetition rate of 3.3 MHz. At pump power of 277 mW, the maximum output power and pulse energy are achieved at 4.92 mW and 1.36 nJ, respectively. ZnPc has a high chemical and photochemical stability, and its significance for use as a potential SA in a mode-locked laser is reported in this work.

3.
PLoS One ; 15(1): e0227494, 2020.
Article in English | MEDLINE | ID: mdl-31999711

ABSTRACT

This paper proposes an approach to accurately estimate the impedance value of a high impedance fault (HIF) and the distance from its fault location for a distribution system. Based on the three-phase voltage and current waveforms which are monitored through a single measurement in the network, several features are extracted using discrete wavelet transform (DWT). The extracted features are then fed into the optimized artificial neural network (ANN) to estimate the HIF impedance and its distance. The particle swarm optimization (PSO) technique is employed to optimize the parameters of the ANN to enhance the performance of fault impedance and distance estimations. Based on the simulation results, the proposed method records encouraging results compared to other methods of similar complexity for both HIF impedance values and estimated distances.


Subject(s)
Electric Impedance , Electric Power Supplies , Neural Networks, Computer , Equipment Failure , Wavelet Analysis
4.
PLoS One ; 13(8): e0202092, 2018.
Article in English | MEDLINE | ID: mdl-30157219

ABSTRACT

In this paper, an image-based waste collection scheduling involving a node with three waste bins is considered. First, the system locates the three bins and determines the waste level of each bin using four Laws Masks and a set of Support Vector Machine (SVM) classifiers. Next, a Hidden Markov Model (HMM) is used to decide on the number of days remaining before waste is collected from the node. This decision is based on the HMM's previous state and current observations. The HMM waste collection scheduling seeks to maximize the number of days between collection visits while preventing waste contamination due to late collection. The proposed system was trained using 100 training images and then tested on 100 test images. Each test image contains three bins that might be shifted, rotated, occluded or toppled over. The upright bins could be empty, partially full or full of garbage of various shapes and sizes. The method achieves bin detection, waste level classification and collection day scheduling rates of 100%, 99.8% and 100% respectively.


Subject(s)
Models, Theoretical , Waste Management/methods , Markov Chains , Refuse Disposal/methods
5.
IEEE J Biomed Health Inform ; 22(3): 664-670, 2018 05.
Article in English | MEDLINE | ID: mdl-28692997

ABSTRACT

Brain electrical activity recordings by electroencephalography (EEG) are often contaminated with signal artifacts. Procedures for automated removal of EEG artifacts are frequently sought for clinical diagnostics and brain-computer interface applications. In recent years, a combination of independent component analysis (ICA) and discrete wavelet transform has been introduced as standard technique for EEG artifact removal. However, in performing the wavelet-ICA procedure, visual inspection or arbitrary thresholding may be required for identifying artifactual components in the EEG signal. We now propose a novel approach for identifying artifactual components separated by wavelet-ICA using a pretrained support vector machine (SVM). Our method presents a robust and extendable system that enables fully automated identification and removal of artifacts from EEG signals, without applying any arbitrary thresholding. Using test data contaminated by eye blink artifacts, we show that our method performed better in identifying artifactual components than did existing thresholding methods. Furthermore, wavelet-ICA in conjunction with SVM successfully removed target artifacts, while largely retaining the EEG source signals of interest. We propose a set of features including kurtosis, variance, Shannon's entropy, and range of amplitude as training and test data of SVM to identify eye blink artifacts in EEG signals. This combinatorial method is also extendable to accommodate multiple types of artifacts present in multichannel EEG. We envision future research to explore other descriptive features corresponding to other types of artifactual components.


Subject(s)
Artifacts , Electroencephalography/methods , Signal Processing, Computer-Assisted , Support Vector Machine , Brain/physiology , Brain-Computer Interfaces , Humans
6.
J Healthc Eng ; 2017: 1489524, 2017.
Article in English | MEDLINE | ID: mdl-29204257

ABSTRACT

Retinal image registration is important to assist diagnosis and monitor retinal diseases, such as diabetic retinopathy and glaucoma. However, registering retinal images for various registration applications requires the detection and distribution of feature points on the low-quality region that consists of vessels of varying contrast and sizes. A recent feature detector known as Saddle detects feature points on vessels that are poorly distributed and densely positioned on strong contrast vessels. Therefore, we propose a multiresolution difference of Gaussian pyramid with Saddle detector (D-Saddle) to detect feature points on the low-quality region that consists of vessels with varying contrast and sizes. D-Saddle is tested on Fundus Image Registration (FIRE) Dataset that consists of 134 retinal image pairs. Experimental results show that D-Saddle successfully registered 43% of retinal image pairs with average registration accuracy of 2.329 pixels while a lower success rate is observed in other four state-of-the-art retinal image registration methods GDB-ICP (28%), Harris-PIIFD (4%), H-M (16%), and Saddle (16%). Furthermore, the registration accuracy of D-Saddle has the weakest correlation (Spearman) with the intensity uniformity metric among all methods. Finally, the paired t-test shows that D-Saddle significantly improved the overall registration accuracy of the original Saddle.


Subject(s)
Image Interpretation, Computer-Assisted , Pattern Recognition, Automated , Retinal Diseases/diagnostic imaging , Retinal Vessels/diagnostic imaging , Databases, Factual , Diabetic Retinopathy/diagnostic imaging , Glaucoma/diagnostic imaging , Humans
7.
Sensors (Basel) ; 15(3): 4658-76, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25723143

ABSTRACT

In this paper, we propose an easy-to-implement passive liquid valve (PLV) for the microfluidic compact-disc (CD). This valve can be implemented by introducing venting chambers to control the air flow of the source and destination chambers. The PLV mechanism is based on equalizing the main forces acting on the microfluidic CD (i.e., the centrifugal and capillary forces) to control the burst frequency of the source chamber liquid. For a better understanding of the physics behind the proposed PLV, an analytical model is described. Moreover, three parameters that control the effectiveness of the proposed valve, i.e., the liquid height, liquid density, and venting chamber position with respect to the CD center, are tested experimentally. To demonstrate the ability of the proposed PLV valve, microfluidic liquid switching and liquid metering are performed. In addition, a Bradford assay is performed to measure the protein concentration and evaluated in comparison to the benchtop procedure. The result shows that the proposed valve can be implemented in any microfluidic process that requires simplicity and accuracy. Moreover, the developed valve increases the flexibility of the centrifugal CD platform for passive control of the liquid flow without the need for an external force or trigger.


Subject(s)
Centrifugation , Mechanical Phenomena , Microfluidic Analytical Techniques , Biological Assay , Compact Disks , Models, Theoretical , Pressure
8.
J Neural Eng ; 11(5): 056018, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25188730

ABSTRACT

This paper presents a wheelchair navigation system based on a hidden Markov model (HMM), which we developed to assist those with restricted mobility. The semi-autonomous system is equipped with obstacle/collision avoidance sensors and it takes the electrooculography (EOG) signal traces from the user as commands to maneuver the wheelchair. The EOG traces originate from eyeball and eyelid movements and they are embedded in EEG signals collected from the scalp of the user at three different locations. Features extracted from the EOG traces are used to determine whether the eyes are open or closed, and whether the eyes are gazing to the right, center, or left. These features are utilized as inputs to a few support vector machine (SVM) classifiers, whose outputs are regarded as observations to an HMM. The HMM determines the state of the system and generates commands for navigating the wheelchair accordingly. The use of simple features and the implementation of a sliding window that captures important signatures in the EOG traces result in a fast execution time and high classification rates. The wheelchair is equipped with a proximity sensor and it can move forward and backward in three directions. The asynchronous system achieved an average classification rate of 98% when tested with online data while its average execution time was less than 1 s. It was also tested in a navigation experiment where all of the participants managed to complete the tasks successfully without collisions.


Subject(s)
Brain-Computer Interfaces , Electroencephalography/instrumentation , Electrooculography/methods , Man-Machine Systems , Markov Chains , Support Vector Machine , Wheelchairs , Adult , Algorithms , Female , Humans , Male , Signal Processing, Computer-Assisted , Young Adult
9.
Sensors (Basel) ; 14(9): 15836-48, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-25166498

ABSTRACT

In this study, the construction and test of tapered plastic optical fiber (POF) sensors, based on an intensity modulation approach are described. Tapered fiber sensors with different diameters of 0.65 mm, 0.45 mm, and 0.35 mm, were used to measure various concentrations of Remazol black B (RBB) dye aqueous solutions at room temperature. The concentrations of the RBB solutions were varied from 0 ppm to 70 ppm. In addition, the effect of varying the temperature of the RBB solution was also investigated. In this case, the output of the sensor was measured at four different temperatures of 27 °C, 30 °C, 35 °C, and 40 °C, while its concentration was fixed at 50 ppm and 100 ppm. The experimental results show that the tapered POF with d = 0.45 mm achieves the best performance with a reasonably good sensitivity of 61 × 10(-4) and a linearity of more than 99%. It also maintains a sufficient and stable signal when heat was applied to the solution with a linearity of more than 97%. Since the transmitted intensity is dependent on both the concentration and temperature of the analyte, multiple linear regression analysis was performed to combine the two independent variables into a single equation. The resulting equation was then validated experimentally and the best agreement between the calculated and experimental results was achieved by the sensor with d = 0.45 mm, where the minimum discrepancy is less than 5%. The authors conclude that POF-based sensors are suitable for RBB dye concentration sensing and, with refinement in fabrication, better results could be achieved. Their low fabrication cost, simple configuration, accuracy, and high sensitivity would attract many potential applications in chemical and biological sensing.


Subject(s)
Environmental Monitoring/instrumentation , Fiber Optic Technology/instrumentation , Naphthalenesulfonates/analysis , Plastics/chemistry , Surface Plasmon Resonance/instrumentation , Water Pollutants, Chemical/analysis , Equipment Design , Equipment Failure Analysis , Feedback , Industrial Waste/analysis , Naphthalenesulfonates/chemistry , Temperature , Transducers
10.
J Biomed Opt ; 19(5): 057009, 2014 May.
Article in English | MEDLINE | ID: mdl-24839996

ABSTRACT

An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.


Subject(s)
Fiber Optic Technology/methods , Fuzzy Logic , Signal Processing, Computer-Assisted , Tooth/chemistry , Animals , Diagnostic Imaging/instrumentation , Diagnostic Imaging/methods , Dogs , Equipment Design , Fiber Optic Technology/instrumentation , Models, Biological
11.
Article in English | MEDLINE | ID: mdl-24110984

ABSTRACT

One of the main challenges faced by researchers in the field of microfluidic compact disc (CD) platforms is the control of liquid movement and sequencing during spinning. This paper presents a novel microfluidic valve based on the principle of liquid equilibrium on a rotating CD. The proposed liquid equilibrium valve operates by balancing the pressure produced by the liquids in a source and a venting chamber during spinning. The valve does not require external forces or triggers, and is able to regulate burst frequencies with high accuracy. In this work, we demonstrate that the burst frequency can be significantly raised by making just a small adjustment of the liquid height in the vent chamber. Finally, the proposed valve ng method can be used separately or combined with other valving methods in advance microfluidic processes.


Subject(s)
Centrifugation/instrumentation , Microfluidic Analytical Techniques/instrumentation , Compact Disks , Equipment Design , Pressure
12.
PLoS One ; 8(3): e58523, 2013.
Article in English | MEDLINE | ID: mdl-23505528

ABSTRACT

This paper introduces novel vacuum/compression valves (VCVs) utilizing paraffin wax. A VCV is implemented by sealing the venting channel/hole with wax plugs (for normally-closed valve), or to be sealed by wax (for normally-open valve), and is activated by localized heating on the CD surface. We demonstrate that the VCV provides the advantages of avoiding unnecessary heating of the sample/reagents in the diagnostic process, allowing for vacuum sealing of the CD, and clear separation of the paraffin wax from the sample/reagents in the microfluidic process. As a proof of concept, the microfluidic processes of liquid flow switching and liquid metering is demonstrated with the VCV. Results show that the VCV lowers the required spinning frequency to perform the microfluidic processes with high accuracy and ease of control.


Subject(s)
Centrifugation , Microfluidics/instrumentation , Microfluidics/methods , Pressure , Waxes , Equipment Design , Paraffin , Temperature
13.
J Med Syst ; 36(3): 1997-2004, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21318328

ABSTRACT

This paper presents a new approach to detect exudates and optic disc from color fundus images based on inverse surface thresholding. The strategy involves the applications of fuzzy c-means clustering, edge detection, otsu thresholding and inverse surface thresholding. The main advantage of the proposed approach is that it does not depend on manually selected parameters that are normally chosen to suit the tested databases. When applied to two sets of databases the proposed method outperforms a method based on watershed segmentation.


Subject(s)
Exudates and Transudates/diagnostic imaging , Image Processing, Computer-Assisted , Optic Disk/diagnostic imaging , Optic Disk/physiopathology , Pattern Recognition, Automated , Diabetic Retinopathy/diagnostic imaging , Fuzzy Logic , Humans , Radiography
SELECTION OF CITATIONS
SEARCH DETAIL
...