Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 29(11): 3780-90, 2013 Mar 19.
Article in English | MEDLINE | ID: mdl-23425198

ABSTRACT

The chemical composition of a TiO2 nanoparticle coated paper surface was analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS) to study the interconnection between wettability and surface chemistry on the nanoscale. In this work, a superhydrophobic TiO2 surface rich in carboxyl-terminated molecules was created by a liquid flame spray process. The TiO2 nanoparticle coated paper surface can be converted by photocatalytic oxidation into a highly hydrophilic one. Interestingly, the hydrophilic surface can be converted back into a superhydrophobic surface by heat treatment. The results showed that both ultraviolet A (UVA) and oven treatment induce changes in the surface chemistry within a few nanometers of the paper surface. These findings are consistent with those from our previously reported X-ray photoelectron spectroscopy (XPS) analysis, but the ToF-SIMS analysis yields more accurate insight into the surface chemistry.

2.
Langmuir ; 28(6): 3138-45, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22263866

ABSTRACT

Hierarchical roughness is known to effectively reduce the liquid-solid contact area and water droplet adhesion on superhydrophobic surfaces, which can be seen for example in the combination of submicrometer and micrometer scale structures on the lotus leaf. The submicrometer scale fine structures, which are often referred to as nanostructures in the literature, have an important role in the phenomenon of superhydrophobicity and low water droplet adhesion. Although the fine structures are generally termed as nanostructures, their actual dimensions are often at the submicrometer scale of hundreds of nanometers. Here we demonstrate that small nanometric structures can have very different effect on surface wetting compared to the large submicrometer scale structures. Hierarchically rough superhydrophobic TiO(2) nanoparticle surfaces generated by the liquid flame spray (LFS) on board and paper substrates revealed that the nanoscale surface structures have the opposite effect on the droplet adhesion compared to the larger submicrometer and micrometer scale structures. Variation in the hierarchical structure of the nanoparticle surfaces contributed to varying droplet adhesion between the high- and low-adhesive superhydrophobic states. Nanoscale structures did not contribute to superhydrophobicity, and there was no evidence of the formation of the liquid-solid-air composite interface around the nanostructures. Therefore, larger submicrometer and micrometer scale structures were needed to decrease the liquid-solid contact area and to cause the superhydrophobicity. Our study suggests that a drastic wetting transition occurs on superhydrophobic surfaces at the nanometre scale; i.e., the transition between the Cassie-Baxter and Wenzel wetting states will occur as the liquid-solid-air composite interface collapses around nanoscale structures. Consequently, water adheres tightly to the surface by penetrating into the nanostructure. The droplet adhesion mechanism presented in this paper gives valuable insight into a phenomenon of simultaneous superhydrophobicity and high water droplet adhesion and contributes to a more detailed comprehension of superhydrophobicity overall.

3.
ACS Nano ; 6(2): 1195-203, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22206417

ABSTRACT

The use of nanoparticles (NPs) in industry is increasing rapidly, but knowledge of the occupational health and safety aspects of NPs is still limited. This is because quantitative NP exposure levels are scarce, and the metrics to describe doses are unclear. This study presents one method for estimating workers' calculated regional inhalation dose of deposited particles from size-fractionated concentrations. It was applied to estimate workers' regional inhalation dose rates and doses separately for NPs and NPs with background particles during NP synthesis. Dose analysis was performed in units of particle number (particles and particles min(-1)), active surface area (µm(2) and µm(2) min(-1)), and mass (ng and ng min(-1)) for three respiratory regions: head airways, tracheobronchial, and alveolar. It was found that in NP synthesis NPs were deposited mainly in the alveolar region in all units. However, when the dose of all particles was examined, it was found that dose and the main deposition region were mainly defined by the synthesized NPs for particle number, as active surface area was described by both NPs and background particles, and mass by background particles. This study provides fundamental data for NP inhalation exposure risk assessment, regulations, dose metrics for NP synthesis, and a basis for defining metrics of dose-biological response and helps us understand the magnitude of doses in NP synthesis. It also illustrates the necessity to obtain size-fractionated measurements of NP concentrations to support accurate dose estimation.


Subject(s)
Industry , Inhalation , Nanoparticles/analysis , Occupational Exposure/analysis , Aerosols , Air/analysis , Humans , Male , Nanoparticles/chemistry , Particle Size , Surface Properties , Time Factors
4.
Biomol Eng ; 24(5): 543-8, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17950664

ABSTRACT

Nanoparticles have become important in many applications. It is essential to be able to control the particle size because the properties of nanoparticles change dramatically with particle size. An efficient way to generate nanoparticles is via aerosol processes. In this study we used Liquid Flame Spray consisting of liquid precursor droplets sprayed into a high-speed hydrogen/oxygen flame where they evaporate, vapours react and nucleate to form titania nanoparticles. Using flame methods, also dopants and sensitizers can easily be introduced in order to, e.g. improve the photocatalytic activity of the nanomaterial. To obtain a practical guideline in order to tailor the final nanoparticle size in the process, we have systematically studied the effects of different process parameters on the particle size of titania. Titania is used, e.g. as a photocatalyst, and then both particle size and crystal structure are important when looking at the efficiency. In this work, the generated nanoparticle size has been measured by aerosol instrumentation and the particle morphology has been verified with transmission electron microscopy. In Liquid Flame Spray method, there are several adjustable parameters such as precursor feed rate into the flame; concentration of the precursor; precursor material itself as well as solvent used in the precursor; mass flow of combustion gases and also the mechanical design of the torch used. We used metal organic based titanium precursors in alcohol solvents, predominantly ethanol and 2-propanol. Large differences in particle production between the precursors were found. Differences could also be seen for various solvents. As for precursor feed in the flame, the more mass is introduced the larger the nanoparticles are, i.e. precursor concentration and precursor feed rate have an impact on particle size. A similar phenomenon can be discovered for the combustion gas flow rates. Torch design also plays an important role in controlling the particle size.


Subject(s)
Microfluidic Analytical Techniques/methods , Nanoparticles/chemistry , Titanium/chemistry , Aerosols/chemistry , Hot Temperature , Hydrogen/chemistry , Microfluidic Analytical Techniques/instrumentation , Oxygen/chemistry , Particle Size , Sensitivity and Specificity , Solvents/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...