Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 12(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37299075

ABSTRACT

Somatic embryogenesis (SE) is an advanced vegetative propagation technology that, when used in combination with breeding and cryopreservation, offers the forest industry a powerful tool for the deployment of elite genotypes. Germination and acclimatization are critical and cost-intensive phases in the production of somatic plants. The efficient conversion of somatic embryos into robust plants is a necessity if a propagation protocol is to be successfully adopted by the industry. In this work, these late phases of the SE protocol of two pine species were investigated. A shortened germination protocol and more controlled acclimatization were investigated for Pinus radiata, testing embryos from 18 embryogenic cell lines. A more simplified protocol, including a cold storage phase, was also compared among 10 of these cell lines. A shortened germination period and more controlled protocols significantly improved the acclimatization of somatic embryos directly from the lab to the glasshouse. When results for all cell lines were pooled, there were significant improvements in all growth characteristics (shoot height, root length, root collar diameter, and root quadrant score). When the more simplified protocol involving cold storage was tested, improvements were seen in the root architecture. For Pinus sylvestris, the late phases of somatic embryogenesis were investigated on seven cell lines in a set of two trials (four to seven cell lines per trial). During the germination phase, a shortened and simplified in vitro period, a cold storage option and basal media were explored. Viable plants were obtained from all treatments. However, there is still the need to improve germination and related protocols together with growing regimes for Pinus sylvestris. The improvements to protocols presented here, particularly for Pinus radiata, result in greater survival and quality of somatic emblings, leading to reduced costs and increased confidence in the technology. Simplified protocols using a cold storage option show great promise and, with some further research, could lead to reductions in the cost of the technology.

2.
Int J Mol Sci ; 23(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36555157

ABSTRACT

Somatic embryogenesis (SE) is considered the most effective method for vegetative propagation of Norway spruce (Picea abies L. Karst). For mass propagation, a storage method that is able to handle large quantities of embryogenic tissues (ETs) reliably and at a low cost is required. The aim of the present study was to compare freezing at -80 °C in a freezer to cryopreservation using liquid nitrogen (LN) as a method for storing Norway spruce ETs. The possibility of simplifying both the pre-treatment and thawing processes in cryopreservation was also studied. The addition of abscisic acid (ABA) to the pre-treatment media and using polyethylene glycol PEG4000 instead of PEG6000 in a cryoprotectant solution were tested. Both the pre-and post-treatments on semi-solid media could be simplified by reducing the number of media, without any loss of genotype or embryo production capacity of ETs. On the contrary, the storage of ETs in a freezer at -80 °C instead of using LN was not possible, and the addition of ABA to the pre-treatment media did not provide benefits but increased costs. The lower regeneration rate after using PEG4000 instead of PEG6000 in a cryoprotectant solution in cryovials was unexpected and unwanted. The simplified pre-and post-treatment protocol will remarkably reduce the workload and costs in the mass-cryopreservation of future forest regeneration materials and in thawing the samples for mass propagations, respectively.


Subject(s)
Picea , Picea/genetics , Seeds , Cryopreservation/methods , Freezing , Cryoprotective Agents/pharmacology , Norway
3.
Front Plant Sci ; 13: 1031686, 2022.
Article in English | MEDLINE | ID: mdl-36388484

ABSTRACT

Vegetative propagation opens opportunities for the multiplication of elite tree progeny for forest regeneration material. For conifers such as Norway spruce (Picea abies) the most efficient vegetative propagation method is seed multiplication through somatic embryogenesis. Efficient culture methods are needed for somatic embryogenesis to be commercially viable. Compared to culturing as clumps, filter disc cultures can improve the proliferation of embryogenic tissue (ET) due to more even spread and better developmental synchronization. In this study, ET proliferation on filter discs was compared to proliferation as clumps. The study comprised 28 genotypes in four trials. The benefits of adding a pre-maturation step and the selection of fresh ET for the subculture were evaluated. Pre-maturation on hormone-free media before maturation did not significantly improve embryo yield but improved greenhouse survival from 69% to 80%, although there was high variation between lines. Filter disc cultivation of ET did result in better growth than in clumps but was more dependent on ET selection and the amount of ET than the clump cultivation method. Filter proliferation also favors certain lines. Post-maturation storage can be used to change the storage compound composition of the produced mature embryos. The embryo storage compound profile was analyzed after post-maturation cold storage treatments of 0, 4, 8, 31, and 61 weeks and compared to that of the zygotic embryos. Cold storage made the storage compound profile of somatic embryos closer to that of zygotic embryos, especially regarding the raffinose family oligosaccharides and storage proteins. Sucrose, hexose, and starch content remained higher in somatic embryos even through cold storage. Prolonged storage appeared less beneficial for embryos, some of which then seemed to spontaneously enter the germination process.

4.
Plants (Basel) ; 10(2)2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33672393

ABSTRACT

Telomeres i.e., termini of the eukaryotic chromosomes protect chromosomes during DNA replication. Shortening of telomeres, either due to stress or ageing is related to replicative cellular senescence. There is little information on the effect of biotechnological methods, such as tissue culture via somatic embryogenesis (SE) or cryopreservation on plant telomeres, even if these techniques are widely applied. The aim of the present study was to examine telomeres of Norway spruce (Picea abies (L.) Karst.) during SE initiation, proliferation, embryo maturation, and cryopreservation to reveal potential ageing or stress-related effects that could explain variation observed at SE process. Altogether, 33 genotypes from 25 families were studied. SE initiation containing several stress factors cause telomere shortening in Norway spruce. Following initiation, the telomere length of the embryogenic tissues (ETs) and embryos produced remains unchanged up to one year of culture, with remarkable genotypic variation. Being prolonged in vitro culture can, however, shorten the telomeres and should be avoided. This is achieved by successful cryopreservation treatment preserving telomere length. Somatic embryo production capacity of the ETs was observed to vary a lot not only among the genotypes, but also from one timepoint to another. No connection between embryo production and telomere length was found, so this variation remains unexplained.

5.
Front Plant Sci ; 12: 791549, 2021.
Article in English | MEDLINE | ID: mdl-34987536

ABSTRACT

Somatic embryogenesis is being piloted for the commercial production of genetically improved Norway spruce (Picea abies L. Karst) forest regeneration material in Finland. The main challenge to making the process commercially relevant is the dependence on time-consuming and highly skilled manual labor. Automation and scaling up are needed to improve cost-effectiveness. Moving from the proliferation of embryogenic tissue on semisolid media to suspension cultures could improve process scalability. In a series of four experiments (overall, with 20 cell lines, 4-9 per experiment), the suitability of proliferation in suspension culture for Norway spruce somatic embryogenesis was evaluated based on the growth rate, indicators of stress conditions, good-quality cotyledonary embryo yield, and embling survival in a greenhouse. The proliferation rate in suspension was found equal to on semisolid media, but with a remarkable genotypic variation. Embryogenic tissue matured directly without pre-treatments from suspension onto semisolid media produced lower numbers of good-quality embryos than tissue matured from semisolid media. Rinsing the suspension-grown tissue with hormone-free liquid media before maturation improved embryo yield, bringing it closer to that of semisolid-grown tissue. Decreasing 6-benzylaminopurine and 2,4-dichlorophenoxyacetic acid concentrations in suspension proliferation media to 0.5 or 0.1 times those in semisolid media did not affect tissue growth and did not improve embryo production. The hydrogen peroxide (H2O2) content and guaiacol peroxidase activity were elevated in suspension cultures compared with semisolid medium, which had the same plant growth regulator content. In one experiment out of four, the greenhouse survival of germinants was lower when proliferation was carried out in full strength suspension than on semisolid media; in other experiments the survival rates were equal.

6.
Front Plant Sci ; 9: 1551, 2018.
Article in English | MEDLINE | ID: mdl-30405679

ABSTRACT

The recalcitrance of adult conifer tissues has prevented vegetative propagation of trees with known and desired characteristics. Somatic embryogenesis (SE) initiation protocol, recently developed for white spruce (Picea glauca, Klimaszewska et al., 2011), was applied in order to examine the feasibility, frequency and timing of SE induction from primordial shoots (PS) of Norway spruce (P. abies). In total, 39 genotypes were screened from 2015 to 2017 using 4-6 years old trees of SE origin as explant donors. Two genotypes responded: 11Pa3794 produced six proliferating embryonal mass (EM) sublines and 11Pa4066 produced 23 EM sublines. SE initiations occurred at the beginning of April, when the temperature sum (d.d.) started to accumulate, and at the end of October or beginning of November when the chilling unit (ch.u.) sum was over 500. EM sublines from both genotypes contained numerous early somatic embryos as detected by acetocarmine staining. The sublines of 11Pa4066 produced the mean of 78.6 ± 12.8 cotyledonary somatic embryos /g FW, but 11Pa3794 produced only a few cotyledonary somatic embryos that were able to germinate. The original EM lines (from which the trees were regenerated) had produced the same number of somatic embryos in 2011 maturations, which was approximately 120 somatic embryos /g FW. Microsatellite analyses conducted with both responsive genotypes confirmed the genetic stability of the EM sublines compared with the donor trees growing in the field. SE protocol developed for white spruce PS explants was also suitable for PS of Norway spruce if the explants were in the responsive developmental stage.

7.
Cryobiology ; 76: 8-17, 2017 06.
Article in English | MEDLINE | ID: mdl-28501323

ABSTRACT

Somatic embryogenesis (SE) is considered as the most-effective method for vegetative propagation of Norway spruce (Picea abies L. Karst). For mass propagation, a cryopreservation method able to handle large numbers of embryogenic tissues (ETs) reliably and at low costs is needed. The aim of the present study was to compare pretreatments, cryoprotectants and slow-cooling devices for cryopreservation of Norway spruce ETs, with 12 variations of methods and a total of 136 spruce genotypes. Secondly, possible applications for cold storage of mature somatic embryos were studied with the aim of developing a flexible time window for embling production. At best, 100% of the embryogenic lines were recovered following cryopreservation, but the results varied among the sets of lines. Also physiological condition of the tissues, pre-treatment and cryoprotectant applied, as well as the slow-cooling device used were found to affect the recovery. The best option for cryopreservation of Norway spruce is to select fresh growth from young ETs as samples, pretreat them on semi-solid medium with increasing sucrose concentration (0.1 M for 24 h; 0.2 M for another 24 h), apply a mixture of polyethylene glycol 6000, glucose, and dimethylsulfoxide, 10% w/v each, as cryoprotectant and use a programmable freezer with a slow cooling rate (0.17 °C/min). On average, 87% of the genotypes can be recovered, without any effect on their genetic fidelity, as shown by microsatellite markers and embryo production capacity. Mature somatic embryos of Norway spruce can also be safely cold-stored at +4 °C, without adverse effects on their germination ability.


Subject(s)
Cold Temperature , Cryopreservation/methods , Picea , Seeds , Cryoprotective Agents/pharmacology , Dimethyl Sulfoxide/pharmacology , Germination , Glucose/pharmacology , Polyethylene Glycols/pharmacology , Sucrose/pharmacology
8.
Cryobiology ; 70(3): 217-25, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25748175

ABSTRACT

The development of a vitrification method for cryopreservation of embryogenic lines from mature holm oak (Quercus ilex L.) trees is reported. Globular embryogenic clusters of three embryogenic lines grown on gelled medium, and embryogenic clumps of one line collected from liquid cultures, were used as samples. The effect of both high-sucrose preculture and dehydration by incubation in the PVS2 solution for 30-90 min, on both survival and maintenance of the differentiation ability was evaluated in somatic embryo explants with and without immersion into liquid nitrogen. Growth recovery of the treated samples and ability to differentiate cotyledonary embryos largely depended on genotype. Overall, high growth recovery frequencies on gelled medium and increase of fresh weight in liquid medium were obtained in all the tested lines, also after freezing. However, the differentiation ability of the embryogenic lines was severely hampered following immersion into LN. Two of the embryogenic lines from gelled medium were able to recover the differentiation ability, one not. In the lines with reduced or no differentiation ability, variation in the microsatellite markers was observed when comparing samples taken prior to and after cryopreservation. The best results were achieved in the genotype Q8 in which 80% of explants grown on gelled medium differentiated into cotyledonary embryos following cryopreservation when they were precultured on medium with 0.3M sucrose and then incubated for 30 min in the PVS2 solution. Explants of the same genotype from liquid medium were unable to recover the differentiation ability. A 4-weeks storage period both in liquid nitrogen and in an ultra-low temperature freezer at -80°C was also evaluated with four embryogenic lines from gelled medium using the best vitrification treatment. Growth recovery frequencies of all lines from the two storage systems were very high, but their differentiation ability was completely lost.


Subject(s)
Conservation of Natural Resources/methods , Cryopreservation/methods , Microsatellite Repeats/genetics , Quercus/growth & development , Seeds/growth & development , Cryoprotective Agents/pharmacology , Freezing , Genotype , Quercus/embryology , Quercus/genetics , Seeds/physiology , Sucrose/pharmacology , Vitrification
9.
Mycorrhiza ; 25(3): 195-204, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25179801

ABSTRACT

Tricholoma matsutake is an ectomycorrhizal fungus that forms commercially important mushrooms in coniferous forests. In this study, we explored the ability of T. matsutake to form mycorrhizae with Pinus sylvestris by inoculating emblings produced through somatic embryogenesis (SE) in an aseptic culture system. Two months after inoculation, clones with less phenolic compounds in the tissue culture phase formed mycorrhizae with T. matsutake, while clones containing more phenols did not. Effects of inoculation on embling growth varied among clones; two of the four tested showed a significant increase in biomass and two had a significant increase in root density. In addition, results suggest that clones forming well-developed mycorrhizae absorbed more Al, Fe, Na, P, and Zn after 8 weeks of inoculation. This study illustrates the value of SE materials in experimental work concerning T. matsutake as well as the role played by phenolic compounds in host plant response to infection by mycorrhizal fungi.


Subject(s)
Mycorrhizae/physiology , Pinus sylvestris/microbiology , Tricholoma/physiology , Cell Culture Techniques , Phenol/analysis , Phenol/metabolism , Pinus sylvestris/chemistry , Pinus sylvestris/embryology , Pinus sylvestris/metabolism
10.
PLoS One ; 9(12): e114434, 2014.
Article in English | MEDLINE | ID: mdl-25502441

ABSTRACT

A small multigene family encodes 4-coumarate:CoA ligases (4CLs) catalyzing the CoA ligation of hydroxycinnamic acids, a branch point step directing metabolites to a flavonoid or monolignol pathway. In the present study, we examined the effect of antisense Populus tremuloides 4CL (Pt4CL1) to the lignin and soluble phenolic compound composition of silver birch (Betula pendula) Pt4CL1a lines in comparison with non-transgenic silver birch clones. The endogenous expression of silver birch 4CL genes was recorded in the stems and leaves and also in leaves that were mechanically injured. In one of the transgenic Pt4CL1a lines, the ratio of syringyl (S) and guaiacyl (G) lignin units was increased. Moreover, the transcript levels of putative silver birch 4CL gene (Bp4CL1) were reduced and contents of cinnamic acid derivatives altered. In the other two Pt4CL1a lines changes were detected in the level of individual phenolic compounds. However, considerable variation was found in the transcript levels of silver birch 4CLs as well as in the concentration of phenolic compounds among the transgenic lines and non-transgenic clones. Wounding induced the expression of Bp4CL1 and Bp4CL2 in leaves in all clones and transgenic lines, whereas the transcript levels of Bp4CL3 and Bp4CL4 remained unchanged. Moreover, minor changes were detected in the concentrations of phenolic compounds caused by wounding. As an overall trend the wounding decreased the flavonoid content in silver birches and increased the content of soluble condensed tannins. The results indicate that by reducing the Bp4CL1 transcript levels lignin composition could be modified. However, the alterations found among the Pt4CL1a lines and the non-transgenic clones were within the natural variation of silver birches, as shown in the present study by the clonal differences in the transcripts levels of 4CL genes, soluble phenolic compounds and condensed tannins.


Subject(s)
Betula/genetics , Betula/metabolism , Coenzyme A Ligases/genetics , Gene Expression Regulation, Plant , Phenols/metabolism , Populus/genetics , Betula/enzymology , Biomechanical Phenomena , Cloning, Molecular , Coenzyme A Ligases/deficiency , Phenols/chemistry , Plant Leaves/genetics , Plants, Genetically Modified , RNA, Messenger/genetics , RNA, Messenger/metabolism , Solubility
11.
Cryobiology ; 63(1): 17-25, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21521636

ABSTRACT

In coniferous species, including Greek fir (Abies cephalonica Loud), the involvement of somatic embryo plants in breeding and reforestation programs is dependent on the success of long-term cryostorage of embryogenic cultures during clonal field testing. In the present study on Greek fir, we assayed the recovery, morphological characteristics and genetic fidelity of embryogenic cell lines 6 and 8 during proliferation and maturation after long-term cryostorage. Our results indicate successful recovery of both cell lines after 6 years in cryostorage. In the maturation phase, both cell lines were capable of producing somatic embryos although some differences were detected among experiments. However, these changes were more dependent on the differences in the components of the maturation media or in the experimental set-up than on the long-term cryostorage. During both proliferation and maturation phases, the morphological fidelity of the embryogenic cultures as well as of the somatic embryos were alike before and after cryopreservation. The genetic fidelity of the cryopreserved cell line 6 that was assayed by random amplified polymorphic DNA (i.e. RAPD) markers demonstrated some changes in the RAPD profiles. The results indicate possible genetic aberrations caused by long-term cryopreservation or somaclonal variation during the proliferation stage. However, in spite of these changes the embryogenic cultures did not lose their proliferation or maturation abilities.


Subject(s)
Abies/embryology , Cryopreservation/methods , Seeds , Abies/genetics , Genetic Markers
12.
Plant Cell Rep ; 26(8): 1205-14, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17431633

ABSTRACT

In this study, 900-bp (signed as p including nucleotides -1 to -886) and partly deleted (signed as dp including nucleotides -1 to -414) COMT (caffeate/5-hydroxyferulate O-methyltransferase) promoters from Populus tremuloides Michx. were fused to the GUS reporter gene, and the tissue-specific expression patterns of the promoters were determined in Betula pendula Roth along the growing season, and as a response to mechanical bending and wounding. The main activity of the PtCOMTp- and PtCOMTdp-promoters, determined by the histochemical GUS assay, was found in the developing xylem of stems during the 8th-13th week and in the developing xylem of roots in the 13th week of the growing season. The GUS expression patterns did not differ among the xylem cell types. The PtCOMT promoter-induced GUS expression observed in phloem fibres suggests a need for PtCOMT expression and thus syringyl (S) lignin synthesis in fibre lignification. However, the PtCOMTdp-promoter induced GUS expression in stem trichomes, which may contribute to the biosynthesis of phenylpropanoid pathway-derived compounds other than lignin. Finally, a strong GUS expression was induced by the PtCOMT promoters in response to mechanical stem bending but not to wounding. The lack of major differences between the PtCOMTp- and PtCOMTdp-promoters suggests that the deleted promoter sequence (including nucleotides -415 to -886) did not contain a significant regulatory element contributing to the GUS expression in young B. pendula trees.


Subject(s)
Betula/genetics , Gene Expression Regulation, Plant , Promoter Regions, Genetic/genetics , Seasons , Betula/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plant Stems/anatomy & histology , Plant Stems/genetics , Plant Stems/metabolism , Plants, Genetically Modified , Stress, Mechanical
13.
Cryobiology ; 51(2): 208-19, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16139833

ABSTRACT

Cryopreservation--the storage of plant germplasm in liquid nitrogen--provides a modern tool for the conservation of forest genetic resources. It is especially applicable for species in which their micropropagation can be initiated from mature tree buds, e.g., silver birch (Betula pendula Roth), thus enabling the conservation of specific genotypes: endangered elite trees and trees expressing rare, valuable or interesting characteristics. The aim of the present study was to develop a vitrification protocol applicable for the cryostorage of silver birch that avoids the use of expensive sophisticated freezers. The average recovery of vitrified axillary silver birch buds was 71% using a protocol that started with four-week cold hardening of bud-bearing in vitro donor shoots on modified medium under short day conditions. After cold hardening, the excised axillary buds were precultivated on medium containing 0.7 M sucrose for 24 h under the same conditions as during the cold hardening period. Following preculture, the buds were treated with loading solution containing 2M glycerol and 0.4 M sucrose for 20 min at room temperature. Finally, the buds were dehydrated with PVS2 cryoprotectant for 120 min followed by direct immersion in liquid nitrogen. According to the morphology and the RAPD profiles of regenerated plants in the greenhouse, the genetic fidelity of the vitrified birch material seems to have remained unchanged.


Subject(s)
Betula/physiology , Cryopreservation/methods , Betula/drug effects , Betula/genetics , Cold Temperature , Cryoprotective Agents/pharmacology , DNA, Plant , Data Interpretation, Statistical , Dehydration , Dimethyl Sulfoxide/pharmacology , Ethylene Glycol/pharmacology , Genomic Instability/drug effects , Genotype , Glycerol/pharmacology , Random Amplified Polymorphic DNA Technique , Sucrose/pharmacology , Time Factors
14.
Planta ; 222(4): 699-708, 2005 Nov.
Article in English | MEDLINE | ID: mdl-15971066

ABSTRACT

Transgenic silver birch (Betula pendula Roth) lines were produced in order to modify lignin biosynthesis. These lines carry COMT (caffeate/5-hydroxyferulate O-methyltransferase) gene from Populus tremuloides driven by constitutive promoter 35S CaMV (cauliflower mosaic virus) or UbB1 (ubiquitin promoter from sunflower). The decreased syringyl/guaiacyl (S/G) ratio was found in stem and leaf lignin of 35S CaMV-PtCOMT transgenic silver birch lines when compared to non-transformed control or UbB1-PtCOMT lines. In controlled feeding experiments the leaves of transgenic birch lines as well as controls were fed to insect herbivores common in boreal environment, i.e., larvae of Aethalura punctulata, Cleora cinctaria and Trichopteryx carpinata (Lepidoptera: Geometridae) as well as the adults of birch leaf-feeding beetles Agelastica alni (Coleoptera: Chrysomelidae) and Phyllobius spp. (Coleoptera: Curculionidae). The feeding preferences of these herbivores differed in some cases among the tested birch lines, but these differences could not be directly associated to lignin modification. They could as well be explained by other characteristics of leaves, either natural or caused by transgene site effects. Growth performance of lepidopteran larvae fed on transgenic or control leaves did not differ significantly.


Subject(s)
Betula/metabolism , Feeding Behavior , Insecta/growth & development , Insecta/physiology , Lignin/metabolism , Animals , Betula/genetics , Coleoptera/growth & development , Coleoptera/physiology , Genes, Plant , Lepidoptera/growth & development , Lepidoptera/physiology , Plant Leaves/anatomy & histology , Plants, Genetically Modified/metabolism
15.
Tree Physiol ; 23(11): 721-33, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12839726

ABSTRACT

The effects of Agrobacterium pRiA4 rol and aux genes, controlled by their endogenous promoters, on tree growth and wood anatomy and chemistry were studied in 5- and 7-year-old silver birch (Betula pendula Roth) plants. Southern hybridization confirmed the following rol and aux gene combinations: control plants (no genes transferred); plants with rolC and rolD genes; plants with rolA, rolB, rolC and rolD genes; and plants with rolA, rolB, rolC, rolD, aux1 and aux2 genes. Transgene mRNA was most abundant in phloem/cambium samples and in the developing xylem, whereas no expression was detected in leaves. Plants with rolC and rolD genes or with all the rol genes were significantly shorter and had smaller leaves and a more bushy growth habit than control plants or plants with both aux and rol genes. Morphological observations and wood chemistry analyses revealed that plants with rol genes produced less xylem and broke bud later than control plants or plants with both aux and rol genes. Tension wood was detected in both control and transgenic plants irrespective of their gene combination, probably as a result of greenhouse cultivation. Xylem fibers were shorter in transgenic plants than in control plants, and plants with all the rol genes were characterized by shorter vessels compared with the control plants and a smaller proportional area of vessels compared with the other groups. In addition, silver birch plants with all the rol genes had approximately a 3.3% lower concentration of total acid soluble carbohydrates than control plants. We conclude that the rolC and rolD genes induced the typical "rol-phenotype," and that this was emphasized by concomitant expression of the rolA and rolB genes and alleviated by the presence of aux1 and aux2 genes. We observed consistent phenotypic effects of rol and aux genes on the morphology, anatomy and cell wall chemistry of the plants.


Subject(s)
Betula/genetics , Plants, Genetically Modified/genetics , Trees/genetics , Base Sequence , Betula/anatomy & histology , Betula/physiology , Genes, Plant/genetics , Lignin/metabolism , Molecular Sequence Data , Rhizobium/genetics , Trees/anatomy & histology , Trees/physiology
16.
Transgenic Res ; 12(3): 375-8, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12779126

ABSTRACT

The study demonstrates the production of a transgenic Scots pine (Pinus sylvestris L.) seedling through the application of transformed pollen in controlled crossings. The pollen lots were transformed by particle bombardment, resulting in transient transformation frequencies varying from 15 to 49% of the germinated pollen grains, and bombarded pollen was used to pollinate megasporangiate strobili. Progeny was screened by histochemical, GUS assays, and selected seedlings were further analysed by PCR. PCR amplification revealed the presence of both the nptII and gusA genes in one seedling (23/237). Results were confirmed by Southern blot analysis. The morphology and growth of this transgenic seedling was normal. Although the transformation frequency of recovered plants was very low (1/14999), the present protocol suggests that production of transgenic Scots pine is possible without the use of any tissue culture methods or the involvement of marker genes, for selection of transformants.


Subject(s)
Crosses, Genetic , Pinus/genetics , Plants, Genetically Modified , Pollen/genetics , Genes, Reporter , Polymerase Chain Reaction , Seedlings/genetics , Seedlings/growth & development , Transformation, Genetic
17.
Plant Biotechnol J ; 1(4): 287-300, 2003 Jul.
Article in English | MEDLINE | ID: mdl-17163905

ABSTRACT

We describe the first ever expression of Vitreoscilla haemoglobin (VHb) in an economically important boreal woody plant hybrid aspen (Populus tremula x tremuloides). VHb has mainly been expressed in biotechnologically important unicellular organisms of both prokaryotic and eukaryotic origin. VHb expression, in this study, was analysed under different greenhouse cultivation conditions and under elevated UV-B illumination. Microscope analyses of leaves grown under optimized conditions revealed significant differences both in cell structure and size when the transgenic VHb lines were compared with the control lines. VHb lines displayed a higher relative volume of mitochondria and a significantly enhanced accumulation of starch in chloroplasts, all of which pointed towards changes in cellular energy production. Under elevated UV-B illumination, the differences between VHb lines became evident. Some specific VHb lines had elevated levels of total flavonoids, individual quercetin, kaempferol- and myricetin-derivatives relative to controls and other transgenic lines. This observation may reflect the availability of extra energy resources for secondary metabolite production and possibly an enhanced protection ability of these transgenic lines against UV-B illumination. Thus, all these findings point to changes in the energy metabolism of VHb lines. In the cultivation conditions tested this observation did not, however, result in a general improvement of elongation growth.

18.
Tree Physiol ; 20(9): 607-613, 2000 May.
Article in English | MEDLINE | ID: mdl-12651425

ABSTRACT

We used in vitro callus and shoot cultures as target material for genetic transformation of silver birch (Betula pendula Roth) by particle bombardment. Cultivation of in vitro shoot cultures before particle bombardment and a long selection period, combined with a high concentration of selective agent after bombardment, led to the production of transformed plantlets that were stable, and no escapes were found among the tree lines produced. Clonal variation in transformation efficiency was found in transient expression of the beta-glucuronidase gene in callus cultures and in plantlets transformed by stable integration of the ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS) and neomycin phosphotransferase (npt2) genes.

SELECTION OF CITATIONS
SEARCH DETAIL
...