Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38766015

ABSTRACT

The increasing prevalence of cannabis use during pregnancy has raised significant medical concerns, primarily related to the presence of Δ9-tetrahydrocannabinol (THC), which readily crosses the placenta and impacts fetal brain development. Previous research has identified midbrain dopaminergic neuronal alterations related to maternal THC consumption. However, the enduring consequences that prenatal cannabis exposure (PCE) has on striatum-based processing during voluntary reward pursuit have not been specifically determined. Here, we characterize PCE rats during food (palatable pellets) or opioid (remifentanyl)-maintained reward seeking. We find that the supra motivational phenotype of PCE rats is independent of value-based processing and is instead related to augmented reinforcing efficiency of opioid rewards. Our findings reveal that in utero THC exposure leads to increased cue-evoked dopamine release responses and an overrepresentation of cue-aligned, effort-driven striatal patterns of encoding. Recapitulating findings in humans, drug-related neurobiological adaptations of PCE were more pronounced in males, who similarly showed increased vulnerability for relapse. Collectively, these findings indicate that prenatal THC exposure in male rats engenders a pronounced neurodevelopmental susceptibility to addiction-like disorders later in life.

2.
Front Pharmacol ; 14: 1238115, 2023.
Article in English | MEDLINE | ID: mdl-37680715

ABSTRACT

Experimental and clinical evidence indicates a deficit of release and function of dopamine in schizophrenia and suggests that α2-adrenoceptor antagonists rescue dopamine deficit and improve the antipsychotic efficacy of D2-receptor antagonists. In anesthetized male rats, we investigated how the blockade of α2- and D2-receptors by atipamezole and raclopride, respectively, modified the firing of noradrenergic neurons in the locus coeruleus (LC) and dopaminergic neurons in the ventral tegmental area (VTA). In freely moving rats, we studied how atipamezole and raclopride modified extracellular noradrenaline, dopamine, and DOPAC levels in the medial prefrontal cortex (mPFC) through microdialysis. When administered alone, atipamezole activated LC noradrenaline but not VTA dopamine cell firing. Combined with raclopride, atipamezole activated dopamine cell firing above the level produced by raclopride. Atipamezole increased extracellular dopamine to the same level, whether administered alone or combined with raclopride. In the presence of the noradrenaline transporter (NET) inhibitor, atipamezole combined with raclopride increased extracellular dopamine beyond the level produced by either compound administered alone. The results suggest that a) the D2-autoreceptor blockade is required for LC noradrenaline to activate VTA cell firing; b) the level of dopamine released from dopaminergic terminals is determined by NET; c) the elevation of extracellular dopamine levels in the mPFC is the resultant of dopamine uptake and release from noradrenergic terminals, independent of dopaminergic cell firing and release; and d) LC noradrenergic neurons are an important target for treatments to improve the prefrontal deficit of dopamine in neuropsychiatric pathologies.

3.
Neuropharmacology ; 233: 109548, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37080337

ABSTRACT

Vulnerability to cocaine use disorder depends upon a combination of genetic and environmental risk factors. While early life adversity is a critical environmental vulnerability factor for drug misuse, allelic variants of the monoamine oxidase A (MAOA) gene have been shown to moderate its influence on the risk of drug-related problems. However, data on the interactions between MAOA variants and early life stress (ES) with respect to predisposition to cocaine abuse are limited. Here, we show that a mouse model capturing the interaction of genetic (low-activity alleles of the Maoa gene; MAOANeo) and environmental (i.e., ES) vulnerability factors displays an increased sensitivity to repeated in vivo cocaine psychomotor stimulant actions associated with a reduction of GABAA receptor-mediated inhibition of dopamine neurons of the ventral tegmental area (VTA). Depolarization-induced suppression of inhibition (DSI), a 2-arachidonoylglycerol (2AG)-dependent form of short-term plasticity, also becomes readily expressed by dopamine neurons from male MAOANeo ES mice repeatedly treated with cocaine. The activation of either dopamine D2 or CB1 receptors contributes to cocaine-induced DSI expression, decreased GABA synaptic efficacy, and hyperlocomotion. Next, in vivo pharmacological enhancement of 2AG signaling during repeated cocaine exposure occludes its actions both in vivo and ex vivo. This data extends our knowledge of the multifaceted sequelae imposed by this gene-environment interaction in VTA dopamine neurons of male pre-adolescent mice and contributes to our understanding of neural mechanisms of vulnerability for early onset cocaine use.


Subject(s)
Cocaine-Related Disorders , Cocaine , Stress, Physiological , Animals , Male , Mice , Central Nervous System Agents/pharmacology , Cocaine/pharmacology , Cocaine-Related Disorders/metabolism , Dopaminergic Neurons , Endocannabinoids/metabolism , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , Ventral Tegmental Area
4.
Neuropharmacology ; 217: 109192, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35850212

ABSTRACT

Neurochemical, electrophysiological and behavioral evidence indicate that the potent α2-adrenoceptor antagonist RS 79948 is also a dopamine (DA) D2 receptor antagonist. Thus, results from ligand binding and adenylate cyclase activity indicate that RS 79948 binds to D2 receptors and antagonized D2 receptor-mediated inhibition of cAMP synthesis at nanomolar concentrations. Results from microdialysis indicated that RS 79948 shared with the selective α2-adrenergic antagonist atipamezole the ability to increase the co-release of DA and norepinephrine (NE) from noradrenergic terminals in the medial prefrontal cortex (mPFC), except that RS 79948-induced DA release persisted after noradrenergic denervation, unlike atipamezole effect, indicating that RS 79948 releases DA from dopaminergic terminals as well. Similarly to the D2 antagonist raclopride, but unlike atipamezole, RS 79948 increased extracellular DA and DOPAC in the caudate nucleus. Electrophysiological results indicate that RS 79948 shared with raclopride the ability to activate the firing of ventral tegmental area (VTA) DA neurons, while atipamezole was ineffective. Results from behavioral studies indicated that RS 79948 exerted effects mediated by independent, cooperative and contrasting inhibition of α2-and D2 receptors. Thus, RS 79948, but not atipamezole, prevented D2-autoreceptor mediated hypomotility produced by a small dose of quinpirole. RS 79948 potentiated, more effectively than atipamezole, quinpirole-induced motor stimulation. RS 79948 antagonized, less effectively than atipamezole, raclopride-induced catalepsy. Future studies should clarify if the dual α2-adrenoceptor- and D2-receptor antagonistic action might endow RS 79948 with potential therapeutic relevance in the treatment of schizophrenia, drug dependence, depression and Parkinson's disease.


Subject(s)
Dopamine , Receptors, Dopamine , Animals , Dopamine/metabolism , Isoquinolines , Naphthyridines , Norepinephrine/metabolism , Quinpirole , Raclopride/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Adrenergic, alpha-2/metabolism , Receptors, Dopamine D1
5.
Int J Mol Sci ; 24(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36614161

ABSTRACT

Fenofibrate (FBR), an oral medication used to treat dyslipidemia, is a ligand of the peroxisome proliferator-activated receptor α (PPARα), a nuclear receptor that regulates the expression of metabolic genes able to control lipid metabolism and food intake. PPARα natural ligands include fatty acids (FA) and FA derivatives such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), known to have anti-inflammatory and anorexigenic activities, respectively. We investigated changes in the FA profile and FA derivatives by HPLC and LC-MS in male C57BL/6J mice fed a standard diet with or without 0.2% fenofibrate (0.2% FBR) for 21 days. Induction of PPARα by 0.2% FBR reduced weight gain, food intake, feed efficiency, and liver lipids and induced a profound change in FA metabolism mediated by parallel enhanced mitochondrial and peroxisomal ß-oxidation. The former effects led to a steep reduction of essential FA, particularly 18:3n3, with a consequent decrease of the n3-highly unsaturated fatty acids (HUFA) score; the latter effect led to an increase of 16:1n7 and 18:1n9, suggesting enhanced hepatic de novo lipogenesis with increased levels of hepatic PEA and OEA, which may activate a positive feedback and further sustain reductions of body weight, hepatic lipids and feed efficiency.


Subject(s)
Fatty Acids , Fenofibrate , PPAR alpha , Animals , Male , Mice , Endocannabinoids/metabolism , Fatty Acids/metabolism , Fenofibrate/pharmacology , Liver/metabolism , Mice, Inbred C57BL , PPAR alpha/agonists
6.
Neuropharmacology ; 189: 108527, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33741403

ABSTRACT

Binge ethanol drinking is an increasingly problematic component of alcohol use disorder costing the United States approximately over $150 billion every year and causes progressive neuroplasticity alterations in numerous brain regions. However, the precise nature or machinery that underlies binge drinking has not yet been elucidated. Corticotropin releasing factor (CRF) neurons in the central amygdala (CeA) are thought to modulate binge drinking, but the specific circuit mechanisms remain poorly understood. Here, we combined optogenetics with in vivo electrophysiology to identify and record from CeA CRF neurons in mice during a repeated binge ethanol drinking task. First, we found that CeA CRF neurons were more active than CeA non-CRF cells during our binge drinking paradigm. We also observed that CeA CRF neurons displayed a heterogeneous spectrum of responses to a lick of ethanol including, pre-lick activated, lick-excited, lick-inhibited, and no response. Interestingly, pre-lick activated CeA CRF neurons exhibited higher frequency and burst firing during binge drinking sessions. Moreover, their overall tonic and phasic electrical activity enhances over repeated binge drinking sessions. Remarkably, CeA CRF units and pre-lick activated CeA CRF neurons did not show higher firing rate or bursting activity during water and sucrose consumption, suggesting that ethanol may "hijack" or plastically alter their intrinsic excitability. This article is part of the special issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.


Subject(s)
Action Potentials/physiology , Binge Drinking/metabolism , Central Amygdaloid Nucleus/metabolism , Corticotropin-Releasing Hormone/metabolism , Ethanol/toxicity , Neurons/metabolism , Action Potentials/drug effects , Alcohol Drinking/adverse effects , Alcohol Drinking/physiopathology , Animals , Binge Drinking/physiopathology , Central Amygdaloid Nucleus/drug effects , Central Amygdaloid Nucleus/physiopathology , Ethanol/administration & dosage , Female , Male , Mice , Mice, Transgenic , Microelectrodes , Neurons/drug effects
7.
Addict Biol ; 26(3): e12961, 2021 05.
Article in English | MEDLINE | ID: mdl-32820590

ABSTRACT

Individuals suffering from substance use disorder often experience relapse events that are attributed to drug craving. Insular cortex (IC) function is implicated in processing drug-predictive cues and is thought to be a critical substrate for drug craving, but the downstream neural circuit effectors of the IC that mediate reward processing are poorly described. Here, we uncover the functional connectivity of an IC projection to the ventral bed nucleus of the stria terminalis (vBNST), a portion of the extended amygdala that has been previously shown to modulate dopaminergic activity within the ventral tegmental area (VTA), and investigate the role of this pathway in reward-related behaviors. We utilized ex vivo slice electrophysiology and in vivo optogenetics to examine the functional connectivity of the IC-vBNST projection and bidirectionally control IC-vBNST terminals in various reward-related behavioral paradigms. We hypothesized that the IC recruits mesolimbic dopamine signaling by activating VTA-projecting, vBNST neurons. Using slice electrophysiology, we found that the IC sends a glutamatergic projection onto vBNST-VTA neurons. Photoactivation of IC-vBNST terminals was sufficient to reinforce behavior in a dopamine-dependent manner. Moreover, silencing the IC-vBNST projection was aversive and resulted in anxiety-like behavior without affecting food consumption. This work provides a potential mechanism by which the IC processes exteroceptive triggers that are predictive of reward.


Subject(s)
Behavior, Animal/physiology , Cerebral Cortex/physiology , Dopamine/metabolism , Septal Nuclei/physiology , Amygdala/physiology , Animals , Anxiety/physiopathology , Female , Humans , Male , Mice, Inbred C57BL , Reward , Ventral Tegmental Area/physiology
8.
Nat Neurosci ; 22(12): 1975-1985, 2019 12.
Article in English | MEDLINE | ID: mdl-31611707

ABSTRACT

The increased legal availability of cannabis has led to a common misconception that it is a safe natural remedy for, among others, pregnancy-related ailments such as morning sickness. Emerging clinical evidence, however, indicates that prenatal cannabis exposure (PCE) predisposes offspring to various neuropsychiatric disorders linked to aberrant dopaminergic function. Yet, our knowledge of how cannabis exposure affects the maturation of this neuromodulatory system remains limited. Here, we show that male, but not female, offspring of Δ9-tetrahydrocannabinol (THC)-exposed dams, a rat PCE model, exhibit extensive molecular and synaptic changes in dopaminergic neurons of the ventral tegmental area, including altered excitatory-to-inhibitory balance and switched polarity of long-term synaptic plasticity. The resulting hyperdopaminergic state leads to increased behavioral sensitivity to acute THC exposure during pre-adolescence. The neurosteroid pregnenolone, a US Food and Drug Administration (FDA) approved drug, rescues synaptic defects and normalizes dopaminergic activity and behavior in PCE offspring, thus suggesting a therapeutic approach for offspring exposed to cannabis during pregnancy.


Subject(s)
Dopaminergic Neurons/metabolism , Dronabinol/adverse effects , Dronabinol/pharmacology , Pregnenolone/pharmacology , Prenatal Exposure Delayed Effects/metabolism , Animals , Dopamine/metabolism , Dopaminergic Neurons/physiology , Dronabinol/antagonists & inhibitors , Endophenotypes , Female , Maze Learning/drug effects , Membrane Potentials/physiology , Motor Activity/drug effects , Neural Inhibition/physiology , Neuronal Plasticity/drug effects , Nucleus Accumbens/metabolism , Pregnancy , Prepulse Inhibition/drug effects , Prepulse Inhibition/physiology , Rats , Risk-Taking , Sensory Gating/drug effects , Sensory Gating/physiology , Sex Characteristics , Ventral Tegmental Area/metabolism
9.
CNS Neurosci Ther ; 25(5): 549-561, 2019 05.
Article in English | MEDLINE | ID: mdl-30461214

ABSTRACT

AIMS: Prenatal maternal immune activation (MIA) is associated with a risk to develop schizophrenia and affects dopamine systems in the ventral tegmental area (VTA), key region in the neurobiology of psychoses. Considering the well-described sex differences in schizophrenia, we investigated whether sex affects MIA impact on dopamine system and on schizophrenia-related behavioral phenotype. Furthermore, considering peroxisome proliferator-activated receptor-α (PPARα) expression in the CNS as well as its anti-inflammatory and neuroprotective properties, we tested if PPARα activation by prenatal treatment with a clinically available fibrate (fenofibrate) may mitigate MIA-related effects. METHODS: We induced MIA in rat dams with polyriboinosinic-polyribocytidylic acid (Poly I:C) and assessed prepulse inhibition and dopamine neuron activity in the VTA by means of electrophysiological recordings in male and female preweaned and adult offspring. RESULTS: Poly I:C-treated males displayed prepulse inhibition deficits, reduced number and firing rate of VTA dopamine neurons, and paired-pulse facilitation of inhibitory and excitatory synapses. Prenatal fenofibrate administration attenuated detrimental effects induced by MIA on both the schizophrenia-like behavioral phenotype and dopamine transmission in male offspring. CONCLUSION: Our study confirms previous evidence that females are less susceptible to MIA and highlights PPARα as a potential target for treatments in schizophrenia.


Subject(s)
Dopamine/metabolism , Fenofibrate/pharmacology , Pregnancy Complications/drug therapy , Prenatal Exposure Delayed Effects/prevention & control , Protective Agents/pharmacology , Schizophrenia/drug therapy , Animals , Disease Models, Animal , Female , Male , Neuroimmunomodulation , Neurons/drug effects , Neurons/metabolism , PPAR alpha/agonists , Poly I-C , Pregnancy , Pregnancy Complications/immunology , Random Allocation , Rats, Sprague-Dawley , Schizophrenia/immunology , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism
10.
Epilepsia ; 58(10): 1762-1770, 2017 10.
Article in English | MEDLINE | ID: mdl-28766701

ABSTRACT

OBJECTIVE: Nocturnal frontal lobe epilepsy (NFLE) is an idiopathic partial epilepsy with a family history in about 25% of cases, with autosomal dominant inheritance (autosomal dominant NFLE [ADNFLE]). Traditional antiepileptic drugs are effective in about 55% of patients, whereas the rest remains refractory. One of the key pathogenetic mechanisms is a gain of function of neuronal nicotinic acetylcholine receptors (nAChRs) containing the mutated α4 or ß2 subunits. Fenofibrate, a common lipid-regulating drug, is an agonist at peroxisome proliferator-activated receptor alpha (PPARα) that is a ligand-activated transcription factor, which negatively modulates the function of ß2-containing nAChR. To test clinical efficacy of adjunctive therapy with fenofibrate in pharmacoresistant ADNFLE\NFLE patients, we first demonstrated the effectiveness of fenofibrate in a mutated mouse model displaying both disease genotype and phenotype. METHODS: We first tested the efficacy of fenofibrate in transgenic mice carrying the mutation in the α4-nAChR subunit (Chrna4S252F) homologous to that found in humans. Subsequently, an add-on protocol was implemented in a clinical setting and fenofibrate was administered to pharmacoresistant NFLE patients. RESULTS: Here, we show that a chronic fenofibrate diet markedly reduced the frequency of large inhibitory postsynaptic currents (IPSCs) recorded from cortical pyramidal neurons in Chrna4S252F mice, and prevented nicotine-induced increase of IPSC frequency. Moreover, fenofibrate abolished differences between genotypes in the frequency of sleep-related movements observed under basal conditions. Patients affected by NFLE, nonresponders to traditional therapy, by means of adjunctive therapy with fenofibrate displayed a reduction of seizure frequency. Furthermore, digital video-polysomnographic recordings acquired in NFLE subjects after 6 months of adjunctive fenofibrate substantiated the significant effects on control of motor-behavioral seizures. SIGNIFICANCE: Our preclinical and clinical studies suggest PPARα as a novel disease-modifying target for antiepileptic drugs due to its ability to regulate dysfunctional nAChRs.


Subject(s)
Anticonvulsants/pharmacology , Drug Resistant Epilepsy/drug therapy , Epilepsy, Frontal Lobe/drug therapy , Fenofibrate/therapeutic use , PPAR alpha/agonists , Adult , Animals , Benzodiazepines/therapeutic use , Carbamazepine/analogs & derivatives , Carbamazepine/therapeutic use , Clobazam , Disease Models, Animal , Drug Resistant Epilepsy/genetics , Drug Therapy, Combination , Electroencephalography , Epilepsy, Frontal Lobe/genetics , Female , Fenofibrate/pharmacology , Humans , Lamotrigine , Levetiracetam , Male , Mice , Mice, Transgenic , Middle Aged , Mutation , Oxcarbazepine , Piracetam/analogs & derivatives , Piracetam/therapeutic use , Polysomnography , Receptors, Nicotinic/genetics , Triazines/therapeutic use , Valproic Acid/therapeutic use , Young Adult
11.
Neuropharmacology ; 110(Pt A): 251-259, 2016 11.
Article in English | MEDLINE | ID: mdl-27457507

ABSTRACT

Depressive disorders cause a substantial burden for the individual and the society. Key depressive symptoms can be modeled in animals and enable the development of novel therapeutic interventions. Chronic unavoidable stress disrupts rats' competence to escape noxious stimuli and self-administer sucrose, configuring a depression model characterized by escape deficit and motivational anhedonia associated to impaired dopaminergic responses to sucrose in the nucleus accumbens shell (NAcS). Repeated treatments that restore these responses also relieve behavioral symptoms. Ventral tegmental area (VTA) dopamine neurons encode reward and motivation and are implicated in the neuropathology of depressive-like behaviors. Peroxisome proliferator-activated receptors type-α (PPARα) acutely regulate VTA dopamine neuron firing via ß2 subunit-containing nicotinic acetylcholine receptors (ß2*nAChRs) through phosphorylation and this effect is predictive of antidepressant-like effects. Here, by combining behavioral, electrophysiological and biochemical techniques, we studied the effects of repeated PPARα stimulation by fenofibrate on mesolimbic dopamine system. We found decreased ß2*nAChRs phosphorylation levels and a switch from tonic to phasic activity of dopamine cells in the VTA, and increased phosphorylation of dopamine and cAMP-regulated phosphoprotein Mr 32,000 (DARPP-32) in the NAcS. We then investigated whether long-term fenofibrate administration to stressed rats reinstated the decreased DARPP-32 response to sucrose and whether this effect translated into antidepressant-like properties. Fenofibrate restored dopaminergic responses to appetitive stimuli, reactivity to aversive stimuli and motivation to self-administer sucrose. Overall, this study suggests PPARα as new targets for antidepressant therapies endowed with motivational anti-anhedonic properties, further supporting the role of an unbalanced mesolimbic dopamine system in pathophysiology of depressive disorders.


Subject(s)
Antidepressive Agents/pharmacology , Depressive Disorder/drug therapy , Depressive Disorder/metabolism , Dopamine/metabolism , Fenofibrate/pharmacology , PPAR alpha/agonists , Anhedonia/drug effects , Anhedonia/physiology , Animals , Chronic Disease , Cyclic AMP/metabolism , Depressive Disorder/pathology , Disease Models, Animal , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Male , Motivation/drug effects , Motivation/physiology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Nucleus Accumbens/pathology , PPAR alpha/metabolism , Phosphorylation/drug effects , Rats, Sprague-Dawley , Receptors, Nicotinic/metabolism , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Stress, Psychological/pathology , Uncertainty , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/pathology
12.
Psychopharmacology (Berl) ; 233(12): 2241-51, 2016 06.
Article in English | MEDLINE | ID: mdl-27020786

ABSTRACT

RATIONALE: Recently, an increasing number of emergency cases due to a novel ketamine-like drug, methoxetamine (MXE), were reported in several countries. However, very little is known about the neuropsychopharmacological and reinforcing profile of this compound. OBJECTIVES: Our study aims to investigate the effects of MXE on self-administration (SA) behaviour in comparison to ketamine and on dopaminergic transmission. METHODS: A SA substitution study was performed in male rats trained to intravenously (IV) self-administer ketamine. At responding stability, rats were exposed to sequential phases of MXE substitution at different dosages (starting from 0.5 and then decreasing to 0.25 and 0.125 mg/kg). Standard electrophysiological techniques were used to record changes in firing activities of ventral tegmental area (VTA) dopamine neurons projecting to the nucleus accumbens (NAc) shell after acute injection of cumulative doses of MXE (0.031-0.5 mg/kg IV). Finally, in vivo microdialysis was performed in freely moving rats to evaluate the effect of acute MXE administration (0.125, 0.25 and 0.5 mg/kg IV) on dopamine release in the NAc shell. RESULTS: MXE 0.125 and 0.25 mg/kg, but not 0.5 mg/kg, substituted for ketamine SA. MXE also induced a dose-dependent stimulation of firing rate (p < 0.0001) and burst firing (p < 0.05) of NAc-projecting VTA dopamine neurons. Consistently, MXE significantly (p < 0.05) increased dopamine extracellular levels in the NAc shell at 0.5 and 0.25 mg/kg with different time onsets, i.e. at 40 and 100 min, respectively. CONCLUSIONS: This study, while confirming the reinforcing effects of MXE, highlights an electrophysiological and neurochemical profile predictive of its addictive properties.


Subject(s)
Cyclohexanones/administration & dosage , Cyclohexylamines/administration & dosage , Dopamine/metabolism , Ketamine/administration & dosage , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism , Animals , Dopaminergic Neurons/drug effects , Dose-Response Relationship, Drug , Limbic System/drug effects , Limbic System/metabolism , Male , Microdialysis/methods , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Rats , Rats, Sprague-Dawley , Self Administration , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
13.
Neuropharmacology ; 97: 383-93, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26113399

ABSTRACT

In humans, affective consequences of neuropathic pain, ranging from depression to anxiety and anhedonia, severely impair quality of life and are a major disease burden, often requiring specific medications. Depressive- and anxiety-like behaviors have also been observed in animal models of peripheral nerve injury. Dysfunctions in central nervous system monoamine transmission have been hypothesized to underlie depressive and anxiety disorders in neuropathic pain. To assess whether these neurons display early changes in their activity that in the long-term might lead to chronicization, maladaptive plasticity and affective consequences, we carried out in vivo extracellular single unit recordings from serotonin neurons in the dorsal raphe nucleus (DRN) and from dopamine neurons in ventral tegmental area (VTA) in the spared nerve injury (SNI) model of neuropathic pain in rats. Extracellular dopamine levels and the expression of dopamine D1, D2 receptors and tyrosine hydroxylase (TH) were measured in the nucleus accumbens. We report that, two weeks following peripheral nerve injury, discharge rate of serotonin DRN neurons and burst firing of VTA dopamine cells are enhanced, when compared with sham-operated animals. We also observed higher extracellular dopamine levels and reduced expression of D2, but not D1, receptors and TH in the nucleus accumbens. Our study confirms that peripheral neuropathy induces changes in the serotonin and dopamine systems that might be the early result of chronic maladaptation to persistent pain. The allostatic activation of these neural systems, which mirrors that already described as a consequence of stress, might lead to depression and anxiety previously observed in neuropathic animals but also an attempt to cope positively with the negative experience.


Subject(s)
Dopaminergic Neurons/physiology , Dorsal Raphe Nucleus/physiopathology , Neuralgia/physiopathology , Nucleus Accumbens/physiopathology , Serotonergic Neurons/physiology , Ventral Tegmental Area/physiopathology , Action Potentials , Animals , Disease Models, Animal , Dopamine/metabolism , Hyperalgesia/physiopathology , Male , Pain Threshold/physiology , Rats, Sprague-Dawley , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Serotonin/metabolism , Touch , Tyrosine 3-Monooxygenase/metabolism
14.
PLoS One ; 8(5): e64541, 2013.
Article in English | MEDLINE | ID: mdl-23724059

ABSTRACT

Nicotinic acetylcholine receptors (nAChRs) are involved in seizure mechanisms. Hence, nocturnal frontal lobe epilepsy was the first idiopathic epilepsy linked with specific mutations in α4 or ß2 nAChR subunit genes. These mutations confer gain of function to nAChRs by increasing sensitivity toward acetylcholine. Consistently, nicotine elicits seizures through nAChRs and mimics the excessive nAChR activation observed in animal models of the disease. Treatments aimed at reducing nicotinic inputs are sought as therapies for epilepsies where these receptors contribute to neuronal excitation and synchronization. Previous studies demonstrated that peroxisome proliferator-activated receptors-α (PPARα), nuclear receptor transcription factors, suppress nicotine-induced behavioral and electrophysiological effects by modulating nAChRs containing ß2 subunits. On these bases, we tested whether PPARα agonists were protective against nicotine-induced seizures. To this aim we utilized behavioral and electroencephalographic (EEG) experiments in C57BL/J6 mice and in vitro patch clamp recordings from mice and rats. Convulsive doses of nicotine evoked severe seizures and bursts of spike-waves discharges in ∼100% of mice. A single dose of the synthetic PPARα agonist WY14643 (WY, 80 mg/kg, i.p.) or chronic administration of fenofibrate, clinically available for lipid metabolism disorders, in the diet (0.2%) for 14 days significantly reduced or abolished behavioral and EEG expressions of nicotine-induced seizures. Acute WY effects were reverted by the PPARα antagonist MK886 (3 mg/kg, i.p.). Since neocortical networks are crucial in the generation of ictal activity and synchrony, we performed patch clamp recordings of spontaneous inhibitory postsynaptic currents (sIPSCs) from frontal cortex layer II/III pyramidal neurons. We found that both acute and chronic treatment with PPARα agonists abolished nicotine-induced sIPSC increases. PPARα within the CNS are key regulators of neuronal activity through modulation of nAChRs. These effects might be therapeutically exploited for idiopathic or genetically determined forms of epilepsy where nAChRs play a major role.


Subject(s)
Anticonvulsants/pharmacology , PPAR alpha/agonists , Pyrimidines/pharmacology , Animals , Anticonvulsants/administration & dosage , Drug Evaluation, Preclinical , Epilepsy, Frontal Lobe/diagnosis , Epilepsy, Frontal Lobe/drug therapy , Fenofibrate/administration & dosage , Fenofibrate/pharmacology , Frontal Lobe/drug effects , Frontal Lobe/metabolism , Inhibitory Postsynaptic Potentials/drug effects , Male , Membrane Potentials/drug effects , Mice , Nicotine/adverse effects , Patch-Clamp Techniques , Phosphorylation/drug effects , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Pyrimidines/administration & dosage , Rats , Receptors, Nicotinic/metabolism , Seizures/chemically induced , Seizures/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...