Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Antimicrob Chemother ; 69(5): 1211-4, 2014 May.
Article in English | MEDLINE | ID: mdl-24390932

ABSTRACT

OBJECTIVES: Resistance to carbapenems in Aeromonas species is rare and mediated mostly by the chromosomal cphA gene. Our aims were to describe the molecular characteristics of the first cases of VIM-producing Aeromonas caviae isolated from human samples. METHODS: Carbapenem-resistant Aeromonas (CRA) spp. were isolated from rectal surveillance cultures. Bacterial identification was done by dnaJ sequencing. Detection of metallo-carbapenemase and other ß-lactamase genes was done by PCR. Molecular typing was done by PFGE. The genetic environment of the blaVIM gene was determined by sequencing. RESULTS: Five CRA were isolated from surveillance cultures in 2010-13; four were from Shaare Zedek Medical Center and one was from Laniado Hospital. All five isolates were identified as A. caviae and comprised four different pulsotypes. MICs ranged from 0.5 to 8 mg/L for imipenem and from 0.25 to 8 mg/L for meropenem. All isolates were resistant to gentamicin, susceptible to amikacin and ciprofloxacin (except one), and were positive for carbapenemase production in the modified Hodge and Carba NP tests. The carbapenemase genes blaVIM-1 and blaVIM-35 were located inside a class I integron with two different sizes to its variable region. CONCLUSIONS: This is the first report of blaVIM in A. caviae from human samples and the first report of VIM-producing Gram-negative bacteria in Israel. This finding is alarming as this species may spread via water or sewage systems. Although infection due to Aeromonas spp. is rare, the presence of the gene on a mobile element is of concern due to the potential for dissemination to clinically important Gram-negative pathogens.


Subject(s)
Aeromonas caviae/enzymology , Aeromonas caviae/genetics , Cross Infection/microbiology , Gram-Negative Bacterial Infections/microbiology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Aeromonas caviae/isolation & purification , Anti-Bacterial Agents/pharmacology , Cross Infection/epidemiology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Electrophoresis, Gel, Pulsed-Field , Gram-Negative Bacterial Infections/epidemiology , Hospitals , Humans , Interspersed Repetitive Sequences , Israel/epidemiology , Microbial Sensitivity Tests , Sequence Analysis, DNA
3.
J Clin Microbiol ; 50(10): 3180-5, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22814467

ABSTRACT

In June 2010, a bla(KPC)-negative, ertapenem-resistant ST-258 Klebsiella pneumoniae strain was isolated from a patient in the Laniado Medical Center (LMC). Our aims were (i) to describe its molecular characteristics and resistance mechanisms and (ii) to assess whether the bla(KPC)-negative ST-258 K. pneumoniae clone spreads as efficiently as its KPC-producing isogenic strain. In a prospective study, surveillance of all ertapenem-resistant, carbapenemase-negative K. pneumoniae (ERCNKP) isolates was conducted from June 2010 to May 2011 at LMC (314 beds) and from July 2008 to December 2010 at the Tel Aviv Sourasky Medical Center (TASMC) (1,200 beds). Molecular typing was done by arbitrarily primed PCR, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST). A total of 8 of 42 (19%) ERCNKP isolates in LMC and 1 of 32 (3.1%) in TASMC belonged to the ST-258 clone. These strains carried the bla(CTX-M-2) or the bla(CTX-M-25) extended-spectrum ß-lactamase (ESBL) gene. Sequencing of the ompK genes showed a frameshift mutation in the ompK35 gene. The fate of the bla(KPC)-carrying plasmid, pKpQIL, was determined by S1 analysis and by PCR of the Tn4401 transposon, repA, and the truncated bla(OXA-9). Plasmid analysis of the ERCNKP ST-258 isolates showed variability in plasmid composition and absence of the Tn4401 transposon and the pKpQIL plasmid. In addition, the ST-258 clone was identified in 35/35 (100%) of KPC-producing K. pneumoniae isolates but in none of 62 ertapenem-susceptible K. pneumoniae isolates collected in the two centers. Our results suggest that ERCNKP ST-258 evolved by loss of the bla(KPC)-carrying plasmid pKpQIL. ERCNKP ST-258 appears to have low epidemic potential.


Subject(s)
Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Klebsiella pneumoniae/classification , Klebsiella pneumoniae/enzymology , Molecular Typing , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Electrophoresis, Gel, Pulsed-Field , Ertapenem , Genotype , Humans , Israel/epidemiology , Klebsiella pneumoniae/isolation & purification , Molecular Epidemiology , Multilocus Sequence Typing , Plasmids/analysis , Polymerase Chain Reaction , Prospective Studies , beta-Lactam Resistance , beta-Lactams/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...