Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Comp Neurol ; 530(5): 792-803, 2022 04.
Article in English | MEDLINE | ID: mdl-34545948

ABSTRACT

Adult male zebra finches (Taeniopygia guttata) continually incorporate adult-born neurons into HVC, a telencephalic brain region necessary for the production of learned song. These neurons express activity-dependent immediate early genes (e.g., zenk and c-fos) following song production, suggesting that these neurons are active during song production. Half of these adult-born HVC neurons (HVC NNs) can be backfilled from the robust nucleus of the arcopallium (RA) and are a part of the vocal motor pathway underlying learned song production, but the other half do not backfill from RA, and they remain to be characterized. Here, we used cell birth-dating, retrograde tract tracing, and immunofluorescence to demonstrate that half of all HVC NNs express the phosphoprotein DARPP-32, a protein associated with dopamine receptor expression. We also demonstrate that DARPP-32+ HVC NNs are contacted by tyrosine hydroxylase immunoreactive fibers, suggesting that they receive catecholaminergic input, have transiently larger nuclei than DARPP-32-neg HVC NNs, and do not backfill from RA. Taken together, these findings help characterize a group of HVC NNs that have no apparent projections to RA and so far have eluded positive identification other than HVC NN status.


Subject(s)
Brain/metabolism , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , High Vocal Center/metabolism , Neurons/metabolism , Vocalization, Animal/physiology , Age Factors , Animals , Finches
2.
PLoS One ; 16(8): e0256709, 2021.
Article in English | MEDLINE | ID: mdl-34464400

ABSTRACT

New neurons born in the adult brain undergo a critical period soon after migration to their site of incorporation. During this time, the behavior of the animal may influence the survival or culling of these cells. In the songbird song system, earlier work suggested that adult-born neurons may be retained in the song motor pathway nucleus HVC with respect to motor progression toward a target song during juvenile song learning, seasonal song restructuring, and experimentally manipulated song variability. However, it is not known whether the quality of song per se, without progressive improvement, may also influence new neuron survival. To test this idea, we experimentally altered song acoustic structure by unilateral denervation of the syrinx, causing a poor quality song. We found no effect of aberrant song on numbers of new neurons in HVC, suggesting that song quality does not influence new neuron culling in this region. However, aberrant song resulted in the loss of left-side dominance in new neurons in the auditory region caudomedial nidopallium (NCM), and a bilateral decrease in new neurons in the basal ganglia nucleus Area X. Thus new neuron culling may be influenced by behavioral feedback in accordance with the function of new neurons within that region. We propose that studying the effects of singing behaviors on new neurons across multiple brain regions that differentially subserve singing may give rise to general rules underlying the regulation of new neuron survival across taxa and brain regions more broadly.


Subject(s)
Geography , Neurogenesis , Vocal Cords/innervation , Vocalization, Animal/physiology , Aging/physiology , Animals , Doublecortin Protein/metabolism , Male , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...