Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Curr Issues Mol Biol ; 46(5): 4417-4436, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38785536

ABSTRACT

Climate change is dramatically increasing the overall area of saline soils around the world, which is increasing by approximately two million hectares each year. Soil salinity decreases crop yields and, thereby, makes farming less profitable, potentially causing increased poverty and hunger in many areas. A solution to this problem is increasing the salt tolerance of crop plants. Transcription factors (TFs) within crop plants represent a key to understanding salt tolerance, as these proteins play important roles in the regulation of functional genes linked to salt stress. The basic leucine zipper (bZIP) TF has a well-documented role in the regulation of salt tolerance. To better understand how bZIP TFs are linked to salt tolerance, we performed a genome-wide analysis in wheat using the Chinese spring wheat genome, which has been assembled by the International Wheat Genome Sequencing Consortium. We identified 89 additional bZIP gene sequences, which brings the total of bZIP gene sequences in wheat to 237. The majority of these 237 sequences included a single bZIP protein domain; however, different combinations of five other domains also exist. The bZIP proteins are divided into ten subfamily groups. Using an in silico analysis, we identified five bZIP genes (ABF2, ABF4, ABI5, EMBP1, and VIP1) that were involved in regulating salt stress. By scrutinizing the binding properties to the 2000 bp upstream region, we identified putative functional genes under the regulation of these TFs. Expression analyses of plant tissue that had been treated with or without 100 mM NaCl revealed variable patterns between the TFs and functional genes. For example, an increased expression of ABF4 was correlated with an increased expression of the corresponding functional genes in both root and shoot tissues, whereas VIP1 downregulation in root tissues strongly decreased the expression of two functional genes. Identifying strategies to sustain the expression of the functional genes described in this study could enhance wheat's salt tolerance.

2.
Methods Mol Biol ; 2776: 63-88, 2024.
Article in English | MEDLINE | ID: mdl-38502498

ABSTRACT

Plastids represent a largely diverse group of organelles in plant and algal cells that have several common features but also a broad spectrum of morphological, ultrastructural, biochemical, and physiological differences. Plastids and their structural and metabolic diversity significantly contribute to the functionality and developmental flexibility of the plant body throughout its lifetime. In addition to the multiple roles of given plastid types, this diversity is accomplished in some cases by interconversions between different plastids as a consequence of developmental and environmental signals that regulate plastid differentiation and specialization. In addition to basic plastid structural features, the most important plastid types, the newly characterized peculiar plastids, and future perspectives in plastid biology are also provided in this chapter.


Subject(s)
Chloroplasts , Embryophyta , Chloroplasts/genetics , Chloroplasts/metabolism , Plastids/metabolism , Embryophyta/genetics , Plants/metabolism
3.
Cells ; 12(10)2023 05 20.
Article in English | MEDLINE | ID: mdl-37408265

ABSTRACT

Large and rapidly increasing areas of salt-affected soils are posing major challenges for the agricultural sector. Most fields used for the important food crop Triticum aestivum (wheat) are expected to be salt-affected within 50 years. To counter the associated problems, it is essential to understand the molecular mechanisms involved in salt stress responses and tolerance, thereby enabling their exploitation in the development of salt-tolerant varieties. The myeloblastosis (MYB) family of transcription factors are key regulators of responses to both biotic and abiotic stress, including salt stress. Thus, we used the Chinese spring wheat genome assembled by the International Wheat Genome Sequencing Consortium to identify putative MYB proteins (719 in total). Protein families (PFAM) analysis of the MYB sequences identified 28 combinations of 16 domains in the encoded proteins. The most common consisted of MYB_DNA-binding and MYB-DNA-bind_6 domains, and five highly conserved tryptophans were located in the aligned MYB protein sequence. Interestingly, we found and characterized a novel 5R-MYB group in the wheat genome. In silico studies showed that MYB transcription factors MYB3, MYB4, MYB13 and MYB59 are involved in salt stress responses. qPCR analysis confirmed upregulation of the expression of all these MYBs in both roots and shoots of the wheat variety BARI Gom-25 (except MYB4, which was downregulated in roots) under salt stress. Moreover, we identified nine target genes involved in salt stress that are regulated by the four MYB proteins, most of which have cellular locations and are involved in catalytic and binding activities associated with various cellular and metabolic processes.


Subject(s)
Transcription Factors , Triticum , Transcription Factors/genetics , Transcription Factors/metabolism , Triticum/metabolism , Amino Acid Sequence , Salt Stress/genetics , Stress, Physiological/genetics
5.
Life (Basel) ; 12(12)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36556447

ABSTRACT

MSALigMap (Multiple Sequence Alignment Ligand Mapping) is a tool for mapping active-site amino-acid residues that bind selected ligands on to target protein sequences of interest. Users can also provide novel sequences (unavailable in public databases) for analysis. MSALigMap is written in Python. There are several tools and servers available for comparing and mapping active-site amino-acid residues among protein structures. However, there has not previously been a tool for mapping ligand binding amino-acid residues onto protein sequences of interest. Using MSALigMap, users can compare multiple protein sequences, such as those from different organisms or clinical strains, with sequences of proteins with crystal structures in PDB that are bound with the ligand/drug and DNA of interest. This allows users to easily map the binding residues and to predict the consequences of different mutations observed in the binding site. The MSALigMap server can be accessed at https://albiorix.bioenv.gu.se/MSALigMap/HomePage.py.

6.
Int J Mol Sci ; 23(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36232687

ABSTRACT

Salinity tolerance-associated phenotypes of 35 EMS mutagenized wheat lines originating from BARI Gom-25 were compared. Vegetative growth was measured using non-destructive image-based phenotyping. Five different NaCl concentrations (0 to 160 mM) were applied to plants 19 days after planting (DAP 19), and plants were imaged daily until DAP 38. Plant growth, water use, leaf Na+, K+ and Cl- content, and thousand kernel weight (TKW) were measured, and six lines were selected for further analysis. In saline conditions, leaf Na+, K+, and Cl- content variation on a dry weight basis within these six lines were ~9.3, 1.4, and 2.4-fold, respectively. Relative to BARI Gom-25, two (OA6, OA62) lines had greater K+ accumulation, three (OA6, OA10, OA62) had 50-75% lower Na+:K+ ratios, and OA62 had ~30% greater water-use index (WUI). OA23 had ~2.2-fold greater leaf Na+ and maintained TKW relative to BARI Gom-25. Two lines (OA25, OA52) had greater TKW than BARI Gom-25 when grown in 120 mM NaCl but similar Na+:K+, WUI, and biomass accumulation. OA6 had relatively high TKW, high leaf K+, and WUI, and low leaf Na+ and Cl-. Phenotypic variation revealed differing associations between the parameters measured in the lines. Future identification of the genetic basis of these differences, and crossing of lines with phenotypes of interest, is expected to enable the assessment of which combinations of parameters deliver the greatest improvement in salinity tolerance.


Subject(s)
Salt Tolerance , Triticum , Ions , Plant Leaves/genetics , Salinity , Salt Tolerance/genetics , Sodium , Sodium Chloride/pharmacology , Triticum/genetics , Water
7.
J Biomol Struct Dyn ; 40(16): 7191-7204, 2022 10.
Article in English | MEDLINE | ID: mdl-33754946

ABSTRACT

Soil salinity and the resulting salt stress it imposes on crop plants is a major problem for modern agriculture. Understanding how salt tolerance mechanisms in plants are regulated is therefore important. One regulatory mechanism is the APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factor family, including dehydration responsive element binding (DREB) transcription factors. By binding to DNA, specifically upstream of genes that play roles in salt tolerance pathways, DREB proteins upregulate expression of these genes. DREB in Triticum aestivum (wheat) cluster in sub-groups and in this study by scanning the recently extended predicted proteome of wheat for DREB, we increased the number of members of this sub-family. Using the wheat genome, we identified 576 genes coding for the AP2 domain of which 508 were identified to have one AP2 domain, a characteristic of the DREB/ERF subfamily. We confirmed the existing four sub-groups by sequence-based phylogenetic analyses but also identified 32 new DREB subfamily members, not belonging to any known sub-group. Transcription factor profile inference analysis identified two genes, TraesCS2B02G002700 and TraesCS2D02G015200, being homologous to DREB1A of Arabidopsis thaliana. Based on molecular simulation (25 ns) analysis, TraesCS2B02G002700 with a CCGAC motif was observed to interact very stably with DNA. In silico mutational analysis at the 19th position in the DREB domain of TraesCS2B02G002700-DNA complex indicated this as a stable part for recognizing and forming interaction with DNA. Moreover, six target genes were predicted having an upstream CCGAC motif regulated by TraesCS2B02G002700. Our study provides an overall framework for exploring the transcription factors in plants and identifying e.g. potential salt stress target genes.Communicated by Ramaswamy H. Sarma.


Subject(s)
Arabidopsis , Transcription Factors , Arabidopsis/genetics , Carrier Proteins/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Stress/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Triticum/genetics , Triticum/metabolism
8.
Proteins ; 89(11): 1530-1540, 2021 11.
Article in English | MEDLINE | ID: mdl-34240464

ABSTRACT

Interaction between protein and ligands are ubiquitous in a biological cell, and understanding these interactions at the atom level in protein-ligand complexes is crucial for structural bioinformatics and drug discovery. Here, we present a web-based protein-ligand interaction application named Ligand Binding Site Comparison (LiBiSCo) for comparing the amino acid residues interacting with atoms of a ligand molecule between different protein-ligand complexes available in the Protein Data Bank (PDB) database. The comparison is performed at the ligand atom level irrespectively of having binding site similarity or not between the protein structures of interest. The input used in LiBiSCo is one or several PDB IDs of protein-ligand complex(es) and the tool returns a list of identified interactions at ligand atom level including both bonded and non-bonded interactions. A sequence profile for the interaction for each ligand atoms is provided as a WebLogo. The LiBiSco is useful in understanding ligand binding specificity and structural promiscuity among families that are structurally unrelated. The LiBiSCo tool can be accessed through https://albiorix.bioenv.gu.se/LiBiSCo/HomePage.py.


Subject(s)
Drug Discovery/methods , Protein Interaction Domains and Motifs , Proteins/chemistry , Software , Catalytic Domain , Computational Biology/methods , Databases, Protein , Humans , Internet , Ligands , Protein Binding
9.
BMC Plant Biol ; 21(1): 36, 2021 Jan 09.
Article in English | MEDLINE | ID: mdl-33422012

ABSTRACT

BACKGROUND: Rice growth is frequently affected by salinity. When exposed to high salinity, rice seed germination and seedling establishment are significantly inhibited. With the promotion of direct-seeding in Asia, improving rice seed germination under salt stress is crucial for breeding. RESULTS: In this study, an indica landrace Wujiaozhan (WJZ) was identified with high germinability under salt stress. A BC1F2 population derived from the crossing WJZ/Nip (japonica, Nipponbare)//Nip, was used to quantitative trait loci (QTL) mapping for the seed germination rate (GR) and germination index (GI) under H2O and 300 mM NaCl conditions. A total of 13 QTLs were identified, i.e. ten QTLs under H2O conditions and nine QTLs under salt conditions. Six QTLs, qGR6.1, qGR8.1, qGR8.2, qGR10.1, qGR10.2 and qGI10.1 were simultaneously identified under two conditions. Under salt conditions, three QTLs, qGR6.2, qGR10.1 and qGR10.2 for GR were identified at different time points during seed germination, which shared the same chromosomal region with qGI6.2, qGI10.1 and qGI10.2 for GI respectively. The qGR6.2 accounted for more than 20% of phenotypic variation under salt stress, as the major effective QTL. Furthermore, qGR6.2 was verified via the BC2F2 population and narrowed to a 65.9-kb region with eleven candidate genes predicted. Based on the microarray database, five candidate genes were found with high transcript abundances at the seed germination stage, of which LOC_Os06g10650 and LOC_Os06g10710 were differentially expressed after seed imbibition. RT-qPCR results showed the expression of LOC_Os06g10650 was significantly up-regulated in two parents with higher levels in WJZ than Nip during seed germination under salt conditions. Taken together, it suggests that LOC_Os06g10650, encoding tyrosine phosphatase family protein, might be the causal candidate gene for qGR6.2. CONCLUSIONS: In this study, we identified 13 QTLs from a landrace WJZ that confer seed germination traits under H2O and salt conditions. A major salt-tolerance-specific QTL qGR6.2 was fine mapped to a 65.9-kb region. Our results provide information on the genetic basis of improving rice seed germination under salt stress by marker-assisted selection (MAS).


Subject(s)
Chromosome Mapping , Germination/genetics , Germination/physiology , Oryza/genetics , Oryza/physiology , Salt Tolerance/genetics , Salt Tolerance/physiology , Gene Expression Regulation, Plant , Phenotype , Quantitative Trait Loci , Salt Stress
10.
J Exp Bot ; 72(2): 459-475, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33068437

ABSTRACT

The evolutionary success of plants relies to a large extent on their extraordinary ability to adapt to changes in their environment. These adaptations require that plants balance their growth with their stress responses. Plant hormones are crucial mediators orchestrating the underlying adaptive processes. However, whether and how the growth-related hormone auxin and the stress-related hormones jasmonic acid, salicylic acid, and abscisic acid (ABA) are coordinated remains largely elusive. Here, we analyse the physiological role of AMIDASE 1 (AMI1) in Arabidopsis plant growth and its possible connection to plant adaptations to abiotic stresses. AMI1 contributes to cellular auxin homeostasis by catalysing the conversion of indole-acetamide into the major plant auxin indole-3-acetic acid. Functional impairment of AMI1 increases the plant's stress status rendering mutant plants more susceptible to abiotic stresses. Transcriptomic analysis of ami1 mutants disclosed the reprogramming of a considerable number of stress-related genes, including jasmonic acid and ABA biosynthesis genes. The ami1 mutants exhibit only moderately repressed growth but an enhanced ABA accumulation, which suggests a role for AMI1 in the crosstalk between auxin and ABA. Altogether, our results suggest that AMI1 is involved in coordinating the trade-off between plant growth and stress responses, balancing auxin and ABA homeostasis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids , Plant Growth Regulators
11.
BMC Plant Biol ; 20(1): 18, 2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31931695

ABSTRACT

BACKGROUND: Triticum aestivum (wheat) is one of the world's oldest crops and has been used for >8000 years as a food crop in North Africa, West Asia and Europe. Today, wheat is one of the most important sources of grain for humans, and is cultivated on greater areas of land than any other crop. As the human population increases and soil salinity becomes more prevalent, there is increased pressure on wheat breeders to develop salt-tolerant varieties in order to meet growing demands for yield and grain quality. Here we developed a mutant wheat population using the moderately salt-tolerant Bangladeshi variety BARI Gom-25, with the primary goal of further increasing salt tolerance. RESULTS: After titrating the optimal ethyl methanesulfonate (EMS) concentration, ca 30,000 seeds were treated with 1% EMS, and 1676 lines, all originating from single seeds, survived through the first four generations. Most mutagenized lines showed a similar phenotype to BARI Gom-25, although visual differences such as dwarfing, giant plants, early and late flowering and altered leaf morphology were seen in some lines. By developing an assay for salt tolerance, and by screening the mutagenized population, we identified 70 lines exhibiting increased salt tolerance. The selected lines typically showed a 70% germination rate on filter paper soaked in 200 mM NaCl, compared to 0-30% for BARI Gom-25. From two of the salt-tolerant OlsAro lines (OA42 and OA70), genomic DNA was sequenced to 15x times coverage. A comparative analysis against the BARI Gom-25 genomic sequence identified a total of 683,201 (OA42), and 768,954 (OA70) SNPs distributed throughout the three sub-genomes (A, B and D). The mutation frequency was determined to be approximately one per 20,000 bp. All the 70 selected salt-tolerant lines were tested for root growth in the laboratory, and under saline field conditions in Bangladesh. The results showed that all the lines selected for tolerance showed a better salt tolerance phenotype than both BARI Gom-25 and other local wheat varieties tested. CONCLUSION: The mutant wheat population developed here will be a valuable resource in the development of novel salt-tolerant varieties for the benefit of saline farming.


Subject(s)
Crops, Agricultural/genetics , Salt Tolerance/genetics , Triticum/genetics , Bangladesh , Ethyl Methanesulfonate , Mutagenesis/genetics , Mutagens , Mutation Rate , Phenotype
12.
Comput Biol Chem ; 83: 107131, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31586723

ABSTRACT

Soil salinization is an increasing global threat to economically important agricultural crops such as bread wheat (Triticum aestivum L.). A main regulator of plants' responses to salt stress is WRKY transcription factors, a protein family that binds to DNA and alters the rate of transcription for specific genes. In this study, we identified 297 WRKY genes in the Chinese Spring wheat genome (Ensembl Plants International Wheat Genome Sequencing Consortium (IWGSC)), of which 126 were identified as putative. We classified 297 WRKY genes into three Groups: I, II (a-e) and III based on phylogenetic analysis. Principal component analysis (PCA) of WRKY proteins using physicochemical properties resulted in a very similar clustering as that observed through phylogenetic analysis. The 5` upstream regions (-2 000 bp) of 107 891 sequences from the wheat genome were used to predict WRKY transcription factor binding sites, and from this we identified 31 296 genes with putative WRKY binding motifs using the Find Individual Motif Occurrences (FIMO) tool. Among these predicted genes, 47 genes were expressed during salt stress according to a literature survey. Thus, we provide insight into the structure and diversity of WRKY domains in wheat and a foundation for future studies of DNA-binding specificity and for analysis of the transcriptional regulation of plants' response to different stressors, such as salt stress, as addressed in this study.


Subject(s)
Computer Simulation , Gene Expression Regulation, Plant/genetics , Genomics , Salt Stress/genetics , Transcription Factors/genetics , Triticum/genetics , Binding Sites , Phylogeny , Principal Component Analysis
13.
Biochem Mol Biol Educ ; 47(2): 189-200, 2019 03.
Article in English | MEDLINE | ID: mdl-30681244

ABSTRACT

This manuscript presents a scoping review of Biotechnology Education Research (BTER) over the last 20 years. BTER during this period primarily focused on attitudes and knowledge, typically using research design methods suitable for addressing questions about frequencies, central tendencies, correlations, and so on. However, to guide the development of educational practices that will increase and sustain students' motivation and interest in science in general and biotechnology in particular, BTER will need to adopt research design methods that support the inference of causal relationships from observations. Research will need to focus on students' interest and motivation, and its relationship with effective teaching and learning of biotechnology in the context of socio-scientific issues (SSIs). Such a shift will increase interest and motivation in teaching and learning biotechnology and will also help establish and maintain students' interest in Science, Technology, Engineering and Mathematics (STEM) because biotechnology is an important STEM subject. This in turn may encourage students to choose educational and professional careers in science, helping to meet society's current and future needs. © 2019 International Union of Biochemistry and Molecular Biology, 47(2): 189-200, 2019.


Subject(s)
Biotechnology/education , Research/trends
14.
Photosynth Res ; 138(3): 361-371, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30117121

ABSTRACT

Photosynthesis is a well-known process that has been intensively investigated, but less is known about the biogenesis of the thylakoid membrane that harbors the photosynthetic machinery. Thylakoid membranes are constituted by several components, the major ones being proteins and lipids. However, neither of these two are produced in the thylakoid membranes themselves but are targeted there by different mechanisms. The interior of the chloroplast, the stroma, is an aqueous compartment that prevents spontaneous transport of single lipids and/or membrane proteins due to their hydrophobicities. Thylakoid targeted proteins are encoded either in the nucleus or plastid, and thus some cross the envelope membrane before entering one of the identified thylakoid targeting pathways. However, the pathway for all thylakoid proteins is not known. Lipids are produced at the envelope membrane and have been proposed to reach the thylakoid membrane by different means: invaginations of the envelope membrane, direct contact sites between these membranes, or through vesicles. Vesicles have been observed in chloroplasts but not much is yet known about the mechanism or regulation of their formation. The question of whether proteins can also make use of vesicles as one mechanism of transport remains to be answered. Here we discuss the presence of vesicles in chloroplasts and their potential role in transporting lipids and proteins. We additionally discuss what is known about the proteins involved in the vesicle transport and the gaps in knowledge that remain to be filled.


Subject(s)
Chloroplasts/metabolism , Cytoplasmic Vesicles/metabolism , Biological Transport , Chloroplast Proteins/metabolism , Chloroplasts/ultrastructure , Lipids/chemistry
15.
Methods Mol Biol ; 1829: 55-72, 2018.
Article in English | MEDLINE | ID: mdl-29987714

ABSTRACT

Plastids represent a largely diverse group of organelles in plant and algal cells that have several common features but also a broad spectrum of differences in respect of how they look (color, size, and ultrastructure), and what their specific function and molecular composition is. Plastids and their structural and metabolic diversity significantly contribute to the functionality and developmental flexibility of the plant body throughout its lifetime. In addition, to the multiple roles of given plastid types, this diversity is accomplished in some cases by interconversions between different plastids as a consequence of developmental and environmental signals that regulate plastid differentiation and specialization.


Subject(s)
Embryophyta/physiology , Plastids/physiology , Chloroplasts/genetics , Chloroplasts/metabolism , Embryophyta/ultrastructure , Plant Physiological Phenomena , Plastids/ultrastructure
16.
Front Plant Sci ; 9: 206, 2018.
Article in English | MEDLINE | ID: mdl-29520287

ABSTRACT

Dynamin-like proteins (DLPs) are a family of membrane-active proteins with low sequence identity. The proteins operate in different organelles in eukaryotic cells, where they trigger vesicle formation, membrane fusion, or organelle division. As discussed here, representatives of this protein family have also been identified in chloroplasts and DLPs are very common in cyanobacteria. Since cyanobacteria and chloroplasts, an organelle of bacterial origin, have similar internal membrane systems, we suggest that DLPs are involved in membrane dynamics in cyanobacteria and chloroplasts. Here, we discuss the features and activities of DLPs with a focus on their potential presence and activity in chloroplasts and cyanobacteria.

17.
Int J Mol Sci ; 18(2)2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28157156

ABSTRACT

Arabidopsis small GTPase RabF1 (ARA6) functions in endosomal vesicle transport and may play a crucial role in recycling and degradation of molecules, thus involved in stress responses. Here we have reported that complementary overexpression lines RabF1OE (overexpression), GTPase mutants RabF1Q93L (constitutively active) and RabF1S47N (dominant negative) lines show longer root growth than wild-type, rabF1 knockout and N-myristoylation deletion (Δ1-29, N-terminus) complementary overexpression mutant plants under salt induced stress, which indicates that N-myristoylation of RabF1 is indispensable for salt tolerance. Moreover, RabF1 is highly expressed during senescence and RabF1OE lines were more tolerant of dark-induced senescence (DIS) than wild-type and rabF1.


Subject(s)
Aging , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Darkness , Salt Tolerance/genetics , Stress, Physiological/genetics , rab GTP-Binding Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Plant Leaves , Plants, Genetically Modified , rab GTP-Binding Proteins/metabolism
18.
Mini Rev Med Chem ; 17(13): 1128-1139, 2017.
Article in English | MEDLINE | ID: mdl-27599970

ABSTRACT

BACKGROUND: In plants, vesicle transport occurs in the secretory pathway in the cytosol, between the membranes of different compartments. Several protein components have been identified to be involved in the process and their functions were characterized. Both cargos and other molecules (such as hormones) have been shown to use vesicle transport, although the major constituents of vesicles are lipids which are transferred from donor to acceptor membranes. In humans, malfunction of the cytosolic vesicle transport system leads to different diseases. METHOD: To better understand and ultimately cure these human diseases, studying other model systems such as yeast can be beneficial. Plants with their cytosolic vesicle transport system could serve as another model system. However, this review focuses on plant vesicles not present in the cytosol but in the chloroplasts, where lipids produced in the surrounding envelope are transported through the aqueous stroma to the thylakoid membranes. Although chloroplast vesicles have found both biochemical and ultrastructural support, only two proteins have been characterized as components of the pathway. However, using bioinformatics a number of other proteins have been suggested as homologs to the cytosolic system. RESULTS & CONCLUSION: Based on these findings vesicles of chloroplasts are likely most similar to the vesicles trafficking from ER to Golgi, or may even be unique, but important experimental support is yet lacking. In this review, proposed vesicle transport components in chloroplasts are presented, and their possible future implementation for human medicine is discussed.


Subject(s)
COP-Coated Vesicles/metabolism , Plastids/metabolism , Biological Transport , COP-Coated Vesicles/chemistry , Chloroplasts/metabolism , Choroideremia/drug therapy , Humans , Huntington Disease/drug therapy , Hypobetalipoproteinemias/drug therapy , Malabsorption Syndromes/drug therapy , Monomeric GTP-Binding Proteins/chemistry , Monomeric GTP-Binding Proteins/metabolism , Monomeric GTP-Binding Proteins/therapeutic use , Plants/metabolism , SNARE Proteins/chemistry , SNARE Proteins/metabolism , SNARE Proteins/therapeutic use , rab GTP-Binding Proteins/chemistry , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/therapeutic use
19.
Mini Rev Med Chem ; 17(13): 1316-1330, 2017.
Article in English | MEDLINE | ID: mdl-27719665

ABSTRACT

BACKGROUND: Higher plants have been used in medicine throughout human history. METHOD: While traditional medicinal uses relied on compounds produced naturally by plants, recent advances have enabled the use of plant-based factories to produce diverse agents including pharmaceuticals, antibiotics, and vaccines. The genes responsible for the production of these substances can be either transiently expressed in plants or integrated into their nuclear genome or plastid genome (plastome) by genetic transformation. This review focuses on the application of plastid transformation of higher plants to produce biopharmaceuticals for human applications that are neither antibiotics nor vaccines. Plastid transformation has several advantages over nuclear transformation and represents a minimal risk of transgene contamination to the environment via pollen grains because plastid genes are in most species normally maternally inherited and thus absent from pollen. Other advantages of sitedirected plastid insertion via homologous recombination include strong gene expression due to the plastid genome's high copy number and resistance to silencing, and the ability to achieve multi-gene expression with a single insertion step. RESULTS: Compared to bacterial systems, plant-based bioreactors offer lower production costs, lower risks of human pathogen contamination, and the possibility of exploiting post-translational modification. CONCLUSION: Consequently, sustainable plant systems based on different species, plastids, and tissues could become an important source of added value in pharmaceutical production.


Subject(s)
Molecular Farming , Plastids/metabolism , Recombinant Proteins/biosynthesis , Blood Proteins/genetics , Blood Proteins/metabolism , Cytokines/genetics , Cytokines/metabolism , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Plants/metabolism , Recombinant Proteins/genetics
20.
Traffic ; 17(10): 1125-38, 2016 10.
Article in English | MEDLINE | ID: mdl-27405297

ABSTRACT

Peripheral vesicles in plastids have been observed repeatedly, primarily in proplastids and developing chloroplasts, in which they are suggested to function in thylakoid biogenesis. Previous observations of vesicles in mature chloroplasts have mainly concerned low temperature pretreated plants occasionally treated with inhibitors blocking vesicle fusion. Here, we show that such vesicle-like structures occur not only in chloroplasts and proplastids, but also in etioplasts, etio-chloroplasts, leucoplasts, chromoplasts and even transforming desiccoplasts without any specific pretreatment. Observations are made both in C3 and C4 species, in different cell types (meristematic, epidermis, mesophyll, bundle sheath and secretory cells) and different organs (roots, stems, leaves, floral parts and fruits). Until recently not much focus has been given to the idea that vesicle transport in chloroplasts could be mediated by proteins, but recent data suggest that the vesicle system of chloroplasts has similarities with the cytosolic coat protein complex II system. All current data taken together support the idea of an ongoing, active and protein-mediated vesicle transport not only in chloroplasts but also in other plastids, obviously occurring regardless of chemical modifications, temperature and plastid developmental stage.


Subject(s)
Intracellular Membranes/ultrastructure , Plant Structures/ultrastructure , Plastids/ultrastructure , Transport Vesicles/ultrastructure , Cold Temperature , Fruit/genetics , Fruit/metabolism , Fruit/ultrastructure , Hot Temperature , Intracellular Membranes/metabolism , Mutation , Oxidative Stress/genetics , Oxidative Stress/physiology , Photosynthesis/physiology , Plant Components, Aerial/genetics , Plant Components, Aerial/metabolism , Plant Components, Aerial/ultrastructure , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/ultrastructure , Plant Structures/genetics , Plant Structures/metabolism , Plastids/genetics , Plastids/metabolism , Protein Transport , Transport Vesicles/genetics , Transport Vesicles/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...