Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(2): e0298433, 2024.
Article in English | MEDLINE | ID: mdl-38359049

ABSTRACT

Coal fly ash from a coal fired power plant is a significant anthropogenic source of various heavy metals in surrounding soils. In this study, heavy metal contamination in topsoil around Sahiwal coal fired power plant (SCFPP) was investigated. Within distance of 0-10, 11-20, 21-30 and 31-40 km of SCFPP, total 56 soil samples were taken, 14 replicate from each distance along with a background subsurface soil sample beyond 60 km. Soil samples were subjected to heavy metals analysis including Fe, Cu and Pb by Atomic Absorption Spectrophotometer (AAS). Composite samples for each distance were analyzed for Al, As, Ba, Cd, Co, Cr, Mn, Mo, Ni, Se, Sr, Zn by Inductively Coupled Plasma (ICP). Pollution indices of exposed soil including Enrichment Factor (EF), Contamination Factor (CF), Geoaccumulation Index (Igeo), and Pollution Load Index (PLI) were calculated. Ecological risk index ([Formula: see text]) of individual metals and the Potential Ecological Risk Index (PERI) for all metals were determined. Soil samples within 40 km of SCFPP were significantly polluted with Pb (mean 2.81 ppm), Cu (mean 0.93 ppm), and Fe (mean 7.93 ppm) compared to their background values (Pb 0.45, Cu 0.3, and Fe 4.9 ppm). Some individual replicates were highly contaminated where Pb, Fe, and Cu values were as high as 6.10, 35.4 and 2.51 ppm respectively. PLI, Igeo, CF, and EF for metals classified the soil around CFPP as "moderate to high degree of pollution", "uncontaminated to moderately contaminated", "moderate to very high contamination", and "moderate to significant enrichment" respectively with average values for Cu as 2.75, 0.82, 3.09, 4.01; Pb 4.79, 1.56, 6.16, 7.76, and for Fe as 1.20, 0.40, 1.62, 3.35 respectively. Average Ecological Risk Index ([Formula: see text]) of each metal and Potential Ecological Risk Index (PERI) for all metals classified the soils as "low risk soils" in all distances. However, ([Formula: see text]) of Pb at a number of sites in all distances have shown "moderate risk". The linear correlation of physico-chemical parameter (EC, pH, Saturation %) and metals have recorded several differential correlations, however, their collective impact on Pb in 0-10 km, has recorded statistically significant correlation (p-value 0.01). This mix of correlations indicates complex interplay of many factors influencing metal concentrations at different sampling sites. The concentration of As, Cr, Co, Cd, and Zn was found within satisfactory limits and lower than in many parts of the world. Although the topsoil around SCFPP is largely recorded at low risk, for complete assessment of its ecological health, further research considering comprehensive environmental parameters, all important trace metals and variety of input pathways is suggested.


Subject(s)
Metals, Heavy , Soil Pollutants , Pakistan , Cadmium/analysis , Lead/analysis , Soil Pollutants/analysis , Environmental Monitoring , Risk Assessment , Metals, Heavy/analysis , Soil , Power Plants , Coal/analysis , China
2.
PLoS One ; 18(10): e0291760, 2023.
Article in English | MEDLINE | ID: mdl-37788245

ABSTRACT

Microplastics (MPs) contaminate every conceivable terrestrial and aquatic environment including high peaks and deep marine trenches. Agricultural lands alone are expected to receive plastic up to 23 times more than ocean basins. In this study, soil samples were collected from peri-urban agricultural lands of Lahore on four sides including Kala Shah Kaku (KSK), Punjab University (PU), Dera Gujran (DG), and Sagian (SG). National Oceanic and Atmospheric Administration (NOAA) protocol was used for MPs extraction and analysis. Extracted MPs were analyzed under microscope at 40X magnification and their composition was analyzed using Fourier Transform Infrared (FTIR) spectroscopy. A considerable concentration of MPs was recorded at all sites. The highest contamination was found at SG with 876 ±194 MPs/kg of soil, and the lowest contamination was recorded at PU with 672 ±235 MPs/kg of soil. However, these differences among the sites were not statistically significant (p = 0.29). The overall predominant shape of MPs was fibers (613±71, 79.73%) followed by sheets (125±55, 16.28%), fragments (30±5, 3.9%) and foam particles (1±2, .09%). The differences in the distribution of MPs in various types were statistically significant (p = 0), while differences between sites were insignificant (p = 0.13). About 95% of MPs were less than 2 mm and 85% were less than 1 mm size. The distribution of MPs in various sizes (p = 0) and differences of this distribution between sites (p = 0.037) were both statistically significant. A good diversity of nine colored MPs was recorded, however majority of the MPs were transparent (89.57%). Six polymer including Polyethylene (PE), Polyethylene terephthalate (PET), Polypropylene (PP), Polystyrene (PS), Polycarbonate (PC), and Polyvinyl Chloride (PVC) were identified by FTIR. The current levels of MPs pollution are higher than in many other parts of the world. Composition of MPs (types, colors, sizes, and polymer types) indicates the diversity of their sources and their possible implications on agricultural ecosystem.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Pakistan , Plastics , Ecosystem , Soil , Polyethylene , Polymers , Environmental Monitoring
3.
Microorganisms ; 11(6)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37375062

ABSTRACT

Levan is a homopolysaccharide of fructose units that repeat as its structural core. As an exopolysaccharide (EPS), it is produced by a great variety of microorganisms and a small number of plant species. The principal substrate used for levan production in industries, i.e., sucrose, is expensive and, hence, the manufacturing process requires an inexpensive substrate. As a result, the current research was designed to evaluate the potential of sucrose-rich fruit peels, i.e., mango peels, banana peels, apple peels, and sugarcane bagasse, to produce levan using Bacillus subtilis via submerged fermentation. After screening, the highest levan-producing substrate, mango peel, was used to optimize several process parameters (temperature, incubation time, pH, inoculum volume, and agitation speed) employing the central composite design (CCD) of response surface methodology (RSM), and their impact on levan production was assessed. After incubation for 64 h at 35 °C and pH 7.5, the addition of 2 mL of inoculum, and agitation at 180 rpm, the highest production of levan was 0.717 g/L of mango peel hydrolysate (obtained from 50 g of mango peels/liter of distilled water). The F-value of 50.53 and p-value 0.001 were calculated using the RSM statistical tool to verify that the planned model was highly significant. The selected model's accuracy was proven by a high value (98.92%) of the coefficient of determination (R2). The results obtained from ANOVA made it clear that the influence of agitation speed alone on levan biosynthesis was statistically significant (p-value = 0.0001). The functional groups of levan produced were identified using FTIR (Fourier-transform ionization radiation). The sugars present in the levan were measured using HPLC and the levan was found to contain only fructose. The average molecular weight of the levan was 7.6 × 106 KDa. The findings revealed that levan can be efficiently produced by submerged fermentation using inexpensive substrate, i.e., fruit peels. Furthermore, these optimized cultural conditions can be applied on a commercial scale for industrial production and commercialization of levan.

4.
Chemosphere ; 313: 137177, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36372336

ABSTRACT

Contaminants of global concern, microplastics (MPs) have been lately reported to be found almost everywhere. Yet there is limited evidence to suggest if these tiny particles can bioaccumulate and biomagnify along the food chain. The current study was conducted to quantify MPs load in two fresh water bodies i.e. River Ravi (Pakistan) and a fish rearing pond fed with ground water to trace MPs along the food chain including biotic and abiotic components. Samples were taken from air, water, sediments, planktons, fish and avian specimen from both water bodies. Higher MPs were found in all samples taken from river Ravi ranging from 3.0 ± 1.58 MPs items in water to 15.20 ± 3.35 MP items in air as compared to 2.8 ± 1.79 MPs in water to 11.20 ± 1.89 air-borne MP items in fish rearing ponds respectively. The mean value of MP items in the GIT of all species was higher (5.05 ± 2.25) as compared to the respiratory tract (1.57 ± 1.3) suggesting ingestion as main mode of exposure. However, this mode of exposure needs to be further investigated along with other exposure routes. Presence of MPs at all trophic levels under investigation indicates some degree of bioaccumulation of these pollutants in the ecosystems.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Plastics , Ecosystem , Food Chain , Pakistan , Environmental Monitoring , Water Pollutants, Chemical/analysis , Fresh Water , Fishes , Water
5.
J Water Health ; 20(3): 575-588, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35350009

ABSTRACT

Parasitic contamination of surface waters, especially recreational waters, is a serious problem for under-developed nations like Pakistan, where numerous outbreaks of parasitic diseases are reported each year. In the current study, parasitic presence in two surface waters (Hanna Lake and Wali-Tangi Dam) of Quetta was monitored quarterly for 1 year. The methodology involved the pre-concentration of the water samples and the subsequent preparation for the microscopic search of parasites. Physico-chemical and bacteriological variables were also studied. Wet staining, modified Trichrome staining, and modified acid-fast staining methods were used to identify various parasitic forms (cysts, oocysts, eggs, trophozoites). Collectively 11 parasitic elements (10 in Lake and 8 in Dam) belonging to 10 species were recorded, many of which are potential human pathogens. The species identified include Trichomonas sp., Isospora sp., Balantidium coli, Cryptosporidium sp., Entamoeba spp., amoebas, Microsporidium sp., Endolimax nana, Ascaris lumbricoides, and Giardia spp. Parasitic contamination remained persistent in both locations throughout the year independent of physico-chemical parameters (temperature, EC, pH, turbidity, and DO) and bacterial concentration of water. Reliance on bacterial presence for monitoring of recreational waters can be a risk for tourists. Entamoeba spp. and A. lumbricoides may be used for surface water monitoring in these waters.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Animals , Giardia , Humans , Lakes , Pakistan
6.
Int J Phytoremediation ; 21(13): 1356-1367, 2019.
Article in English | MEDLINE | ID: mdl-31364389

ABSTRACT

In the present study, the effectiveness of water hyacinth and water lettuce was tested for the phytoremediation of landfill leachate for the period of 15 days. Fifteen plastic containers were used in experimental setup where aquatic plants were fitted as a floating bed with the help of thermo-pole sheet. It was observed that both plants significantly (p < 0.05/p < 0.01/p < 0.001) reduce the physicochemical parameters pH, TDS, BOD, COD and heavy metals like Zn, Pb, Fe, Cu and Ni from landfill leachate. Maximum reduction in these parameters was obtained at 50% and 75% landfill leachate treatment and their removal rate gradually increased from day 3 to day 15 of the experiment. The maximum removal rate for heavy metals such as for Zn (80-90%), Fe (83-87%) and Pb (76-84%) was attained by Eichhornia crassipes and Pistia stratiotes. Value of bioconcentration and translocation factor was less than 1 which indicates the low transport of heavy metals from roots to the above-ground parts of the plants. Both these plants accumulate heavy metals inside their body without showing much reduction in growth and showing tolerance to all the present metals. Therefore, results obtained from the study suggest that these aquatic plants are suitable candidate for the removal of pollution load from landfill leachate.


Subject(s)
Araceae , Eichhornia , Metals, Heavy , Water Pollutants, Chemical , Biodegradation, Environmental , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...