Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 19(9): 5862-5867, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31408355

ABSTRACT

Coupling between a mechanical resonator and optical cavities, microwave resonators, or other mechanical resonators have been used to observe interesting effects from sideband cooling to coherent manipulation of phonons. Here we demonstrate strong coupling between different vibrational modes of MoS2 drum resonators at room temperature. We observe intermodal as well as intramodal coupling. Cooperativity, a measure of coupling between the two modes, can be tuned by more than an order of magnitude by changing the direct current gate bias. The large measured cooperativity of about 900 at room temperature indicates that the phonon population can be coherently transferred between the modes for more than 500 cycles. This coherent oscillation is of great interest in studying quantum effects in macroscopic objects.

2.
Nanoscale ; 11(17): 8394-8401, 2019 Apr 25.
Article in English | MEDLINE | ID: mdl-30984929

ABSTRACT

We demonstrate all electrical measurements on NEMS devices fabricated using CVD grown monolayer MoS2. The as-grown monolayer film of MoS2 on top of the SiO2/Si wafer is processed to fabricate arrays and individual NEMS devices without the complex pick and transfer techniques associated with graphene. The electromechanical properties of the devices are on par with those fabricated using the exfoliation method. The frequency response of these devices is then used as a probe to estimate the linear thermal expansion coefficient of the material and evaluate the effect of strain on the effective Duffing nonlinearity in the devices.

3.
Nanoscale ; 9(46): 18299-18304, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29143000

ABSTRACT

Parametric amplification is widely used in diverse areas from optics to electronic circuits to enhance low level signals by varying relevant system parameters. Parametric amplification has also been performed in several micro-nano resonators including nano-electromechanical system (NEMS) resonators based on a two-dimensional (2D) material. Here, we report the enhancement of mechanical response in a MoS2 drum resonator using degenerate parametric amplification. We use parametric pumping to modulate the spring constant of the MoS2 resonator and achieve a 10 dB amplitude gain. We also demonstrate quality factor enhancement in the resonator with parametric amplification. We investigate the effect of cubic nonlinearity on parametric amplification and show that it limits the gain of the mechanical resonator. Amplifying ultra-small displacements at room temperature and understanding the limitations of the amplification in these devices is key for using these devices for practical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...