Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 126(7): 076603, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33666489

ABSTRACT

A recently developed formula for the Hall coefficient [A. Auerbach, Phys. Rev. Lett. 121, 066601 (2018)PRLTAO0031-900710.1103/PhysRevLett.121.066601] is applied to nodal line and Weyl semimetals (including graphene) and to spin-orbit split semiconductor bands in two and three dimensions. The calculation reduces to a ratio of two equilibrium susceptibilities, where corrections are negligible at weak disorder. Deviations from Drude's inverse carrier density are associated with band degeneracies, Fermi surface topology, and interband currents. Experiments which can measure these deviations are proposed.

2.
Phys Rev Lett ; 120(1): 016403, 2018 Jan 05.
Article in English | MEDLINE | ID: mdl-29350954

ABSTRACT

We show that the topological index of a wave function, computed in the space of twisted boundary phases, is preserved under Hilbert space truncation, provided the truncated state remains normalizable. If truncation affects the boundary condition of the resulting state, the invariant index may acquire a different physical interpretation. If the index is symmetry protected, the truncation should preserve the protecting symmetry. We discuss implications of this invariance using paradigmatic integer and fractional Chern insulators, Z_{2} topological insulators, and spin-1 Affleck-Kennedy-Lieb-Tasaki and Heisenberg chains, as well as its relation with the notion of bulk entanglement. As a possible application, we propose a partial quantum tomography scheme from which the topological index of a generic multicomponent wave function can be extracted by measuring only a small subset of wave function components, equivalent to the measurement of a bulk entanglement topological index.

3.
Phys Rev Lett ; 119(1): 016601, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28731741

ABSTRACT

For weakly disordered fractional quantum Hall phases, the nonlinear photoconductivity is related to the charge susceptibility of the clean system by a Floquet boost. Thus, it may be possible to probe collective charge modes at finite wave vectors by electrical transport. Incompressible phases, irradiated at slightly above the magnetoroton gap, are predicted to exhibit negative photoconductivity and zero resistance states with spontaneous internal electric fields. Nonlinear conductivity can probe composite fermions' charge excitations in compressible filling factors.

4.
Phys Rev Lett ; 117(8): 085302, 2016 Aug 19.
Article in English | MEDLINE | ID: mdl-27588863

ABSTRACT

We provide a theoretical explanation for the optical modes observed in inelastic neutron scattering on the bcc solid phase of helium 4 [T. Markovich et al., Phys. Rev. Lett. 88, 195301 (2002)]. We argue that these excitations are amplitude (Higgs) modes associated with fluctuations of the crystal order parameter within the unit cell. We present an analysis of the modes based on an effective Ginzburg-Landau model, classify them according to their symmetry properties, and compute their signature in inelastic neutron scattering experiments. In addition, we calculate the dynamical structure factor by means of an ab intio quantum Monte Carlo simulation and find a finite frequency excitation at zero relative momentum.

5.
Phys Rev Lett ; 117(26): 266801, 2016 Dec 23.
Article in English | MEDLINE | ID: mdl-28059526

ABSTRACT

Certain nonuniform strain applied to graphene flakes has been shown to induce pseudo-Landau levels in the single-particle spectrum, which can be rationalized in terms of a pseudomagnetic field for electrons near the Dirac points. However, this Landau level structure is, in general, approximate and restricted to low energies. Here, we introduce a family of strained bipartite tight-binding models in arbitrary spatial dimension d and analytically prove that their entire spectrum consists of perfectly degenerate pseudo-Landau levels. This construction generalizes the case of triaxial strain on graphene's honeycomb lattice to arbitrary d; in d=3, our model corresponds to tetraxial strain on the diamond lattice. We discuss general aspects of pseudo-Landau levels in arbitrary d.

6.
Phys Rev Lett ; 113(7): 076407, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25170720

ABSTRACT

Two-dimensional topological phases are characterized by Thouless-Kohmoto-Nightingale-den Nijs integers, which classify Bloch energy bands or groups of Bloch bands. However, quantization does not survive thermal averaging or dephasing to mixed states. We show that using Uhlmann's parallel transport for density matrices [Rep. Math. Phys. 24, 229 (1986).

7.
Phys Rev Lett ; 107(21): 216601, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-22181902

ABSTRACT

Graphene subject to a spatially uniform, circularly polarized electric field supports a Floquet spectrum with properties akin to those of a topological insulator. The transport properties of this system, however, are complicated by the nonequilibrium occupations of the Floquet states. We address this by considering transport in a two-terminal ribbon geometry for which the leads have well-defined chemical potentials, with an irradiated central scattering region. We demonstrate the presence of edge states, which for infinite mass boundary conditions may be associated with only one of the two valleys. At low frequencies, the bulk dc conductivity near zero energy is shown to be dominated by a series of states with very narrow anticrossings, leading to superdiffusive behavior. For very long ribbons, a ballistic regime emerges in which edge state transport dominates.

8.
Phys Rev Lett ; 102(7): 070403, 2009 Feb 20.
Article in English | MEDLINE | ID: mdl-19257650

ABSTRACT

We study hard-core lattice bosons in a magnetic field near half filling. The bare vortex hopping rate is extracted from exact diagonalizations of square clusters. We deduce a quantum melting of the vortex lattice above vortex density of 6.5x10(-3) per lattice site. The Hall conductivity reverses sign abruptly as the density crosses half filling, where its characteristic temperature scale vanishes. We prove that at precisely half filling, each vortex carries a spin-1/2 quantum number ("v spin"). Experimental implications of these results are discussed.

9.
Phys Rev Lett ; 99(14): 146804, 2007 Oct 05.
Article in English | MEDLINE | ID: mdl-17930699

ABSTRACT

We predict the existence of a three-dimensional quantum Hall effect plateau in a graphite crystal subject to a magnetic field. The plateau has a Hall conductivity quantized at 4e2/variant Planck's over 2pi 1/c0 with c0 the c-axis lattice constant. We analyze the three-dimensional Hofstadter problem of a realistic tight-binding Hamiltonian for graphite, find the gaps in the spectrum, and estimate the critical value of the magnetic field above which the Hall plateau appears. When the Fermi level is in the bulk Landau gap, Hall transport occurs through the appearance of chiral surface states. We estimate the magnetic field necessary for the appearance of the effect to be 15.4 T for electron carriers and 7.0 T for holes.

SELECTION OF CITATIONS
SEARCH DETAIL
...