Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 17498-1752, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31947502

ABSTRACT

The aim of this work is to design and develop a sensorized sock in Electronic Textile (ET), SWEET-Sock. The device has been realized by three textile sensor placed in a specific points of plantar arch and an accelerometer unit, both embedded and connected by conductive thread. The sensors allows the acquisition of plantar pressure and acceleration signals deriving from the motion of the lower limbs. The detected biosignals have been condictionated by a voltage divider and then were acquired through a LilyPad Arduino microcontroller and transmitted using the Simblee BLE technology to a custom made mobile app. Data were afterwards uploaded through a smartphone on a dropbox cloud where a custom made MATLAB GUI platform has been developed for further digital signal processing of main biomechanical parameters of clinical interest in postural and gait analysis.


Subject(s)
Mobile Applications , Smartphone , Textiles , Wearable Electronic Devices , Acceleration , Foot , Gait Analysis , Humans , Posture , Signal Processing, Computer-Assisted
2.
Rev Sci Instrum ; 88(8): 085103, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28863628

ABSTRACT

An enhanced Fast Digital Integrator (eFDI) was prototyped to satisfy the new requirements arising from current on-field exploitation of the previous Fast Digital Integrator in magnetic measurements for particle accelerators at CERN. In particular, the prototype achieves improved performance in terms of offset (5 ppm on 10 V fullscale), self-calibration accuracy (1 ppm of residual error), and data throughput (100 MB/s), by simultaneously preserving high-level signal-to-noise and distortion ratio (SINAD 105 dB at 10 Hz). In this paper, initially, the specifications, the design solutions, and the main features of the eFDI are illustrated. Then, the experimental results of the metrological characterization are compared with the CERN state-of-the-art integrator FDI performance in order to highlight the achieved improvements.

3.
Rev Sci Instrum ; 87(3): 035004, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27036810

ABSTRACT

The uncertainty of a rotating coil transducer for magnetic field mapping is analyzed. Unscented transform and statistical design of experiments are combined to determine magnetic field expectation, standard uncertainty, and separate contributions of the uncertainty sources. For nonlinear measurement models, the unscented transform-based approach is more error-proof than the linearization underlying the "Guide to the expression of Uncertainty in Measurements" (GUMs), owing to the absence of model approximations and derivatives computation. When GUM assumptions are not met, the deterministic sampling strategy strongly reduces computational burden with respect to Monte Carlo-based methods proposed by the Supplement 1 of the GUM. Furthermore, the design of experiments and the associated statistical analysis allow the uncertainty sources domain to be explored efficiently, as well as their significance and single contributions to be assessed for an effective setup configuration. A straightforward experimental case study highlights that a one-order-of-magnitude reduction in the relative uncertainty of the coil area produces a decrease in uncertainty of the field mapping transducer by a factor of 25 with respect to the worst condition. Moreover, about 700 trials and the related processing achieve results corresponding to 5 × 10(6) brute-force Monte Carlo simulations.

4.
Rev Sci Instrum ; 86(7): 075004, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26233405

ABSTRACT

A transducer based on a virtual flow meter is proposed for monitoring helium distribution and consumption in cryogenic systems for particle accelerators. The virtual flow meter allows technical and economical constraints, preventing installation of physical instruments in all the needed measurement points, to be overcome. Virtual flow meter performance for the alternative models of Samson [ http://www.samson.de (2015)] and Sereg-Schlumberger [ http://www.slb.com/ (2015)] is compared with the standard IEC 60534-2-1 [Industrial-process control valves-Part 2-1: Flow capacity-sizing equations for fluid flow under installed conditions (2011), https://webstore.iec.ch/publication/2461], for a large temperature range, for both gaseous and liquid helium phases, and for different pressure drops. Then, the calibration function of the transducer is derived. Finally, the experimental validation for the helium gaseous state on the test station for superconducting magnets in the laboratory SM18 [Pirotte et al., AIP Conf. Proc. 1573, 187 (2014)] at CERN is reported.

5.
Rev Sci Instrum ; 86(12): 125001, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26724060

ABSTRACT

The metrological performance of a virtual flowmeter-based transducer for monitoring helium under cryogenic conditions is assessed. At this aim, an uncertainty model of the transducer, mainly based on a valve model, exploiting finite-element approach, and a virtual flowmeter model, based on the Sereg-Schlumberger method, are presented. The models are validated experimentally on a case study for helium monitoring in cryogenic systems at the European Organization for Nuclear Research (CERN). The impact of uncertainty sources on the transducer metrological performance is assessed by a sensitivity analysis, based on statistical experiment design and analysis of variance. In this way, the uncertainty sources most influencing metrological performance of the transducer are singled out over the input range as a whole, at varying operating and setting conditions. This analysis turns out to be important for CERN cryogenics operation because the metrological design of the transducer is validated, and its components and working conditions with critical specifications for future improvements are identified.

6.
Rev Sci Instrum ; 85(9): 095103, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25273768

ABSTRACT

Evolutionary approach to centralized multiple-faults diagnostics is extended to distributed transducer networks monitoring large experimental systems. Given a set of anomalies detected by the transducers, each instance of the multiple-fault problem is formulated as several parallel communicating sub-tasks running on different transducers, and thus solved one-by-one on spatially separated parallel processes. A micro-genetic algorithm merges evaluation time efficiency, arising from a small-size population distributed on parallel-synchronized processors, with the effectiveness of centralized evolutionary techniques due to optimal mix of exploitation and exploration. In this way, holistic view and effectiveness advantages of evolutionary global diagnostics are combined with reliability and efficiency benefits of distributed parallel architectures. The proposed approach was validated both (i) by simulation at CERN, on a case study of a cold box for enhancing the cryogeny diagnostics of the Large Hadron Collider, and (ii) by experiments, under the framework of the industrial research project MONDIEVOB (Building Remote Monitoring and Evolutionary Diagnostics), co-funded by EU and the company Del Bo srl, Napoli, Italy.

7.
Rev Sci Instrum ; 83(2): 024702, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22380108

ABSTRACT

The fast digital integrator has been conceived to face most demanding magnet test requirements with a resolution of 10 ppm, a signal-to-noise ratio of 105 dB at 20 kHz, a time resolution of 50 ns, an offset of 10 ppm, and on-line processing. In this paper, the on-field achievements of the fast digital integrator are assessed by a specific measurement campaign at the European Organization for Nuclear Research (CERN). At first, the architecture and the metrological specifications of the instrument are reported. Then, the recent on-field achievements of (i) ±10 ppm of uncertainty in the measurement of the main field for superconducting magnets characterization, (ii) ±0.02 % of field uncertainty in quality assessment of small-aperture permanent magnets, and (iii) ±0.15 % of drift, in an excitation current measurement of 600 s under cryogenic conditions, are presented and discussed.

8.
Rev Sci Instrum ; 83(1): 013306, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22299944

ABSTRACT

An in situ procedure for calibrating equivalent magnetic area and rotation radius of rotating coils is proposed for testing accelerator magnets shorter than the measuring coil. The procedure exploits measurements of magnetic field and mechanical displacement inside a reference quadrupole magnet. In a quadrupole field, an offset between the magnet and coil rotation axes gives rise to a dipole component in the field series expansion. The measurements of the focusing strength, the displacement, and the resulting dipole term allow the equivalent area and radius of the coil to be determined analytically. The procedure improves the accuracy of coils with large geometrical irregularities in the winding. This is essential for short magnets where the coil dimensions constrain the measurement accuracy. Experimental results on different coils measuring small-aperture permanent magnets are shown.

SELECTION OF CITATIONS
SEARCH DETAIL
...