Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(6): 066004, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38394564

ABSTRACT

We have investigated the 3d orbital excitations in CaCuO_{2} (CCO), Nd_{2}CuO_{4} (NCO), and La_{2}CuO_{4} (LCO) using high-resolution resonant inelastic x-ray scattering. In LCO they behave as well-localized excitations, similarly to several other cuprates. On the contrary, in CCO and NCO the d_{xy} orbital clearly disperses, pointing to a collective character of this excitation (orbiton) in compounds without apical oxygen. We ascribe the origin of the dispersion as stemming from a substantial next-nearest-neighbor (NNN) orbital superexchange. Such an exchange leads to the liberation of the orbiton from its coupling to magnons, which is associated with the orbiton hopping between nearest neighbor copper sites. Finally, we show that the exceptionally large NNN orbital superexchange can be traced back to the absence of apical oxygens suppressing the charge transfer energy.

2.
Nat Commun ; 14(1): 7198, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37938250

ABSTRACT

The universality of the strange metal phase in many quantum materials is often attributed to the presence of a quantum critical point (QCP), a zero-temperature phase transition ruled by quantum fluctuations. In cuprates, where superconductivity hinders direct QCP observation, indirect evidence comes from the identification of fluctuations compatible with the strange metal phase. Here we show that the recently discovered charge density fluctuations (CDF) possess the right properties to be associated to a quantum phase transition. Using resonant x-ray scattering, we studied the CDF in two families of cuprate superconductors across a wide doping range (up to p = 0.22). At p* ≈ 0.19, the putative QCP, the CDF intensity peaks, and the characteristic energy Δ is minimum, marking a wedge-shaped region in the phase diagram indicative of a quantum critical behavior, albeit with anomalies. These findings strengthen the role of charge order in explaining strange metal phenomenology and provide insights into high-temperature superconductivity.

3.
Science ; 373(6562): 1506-1510, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34554788

ABSTRACT

The normal state of optimally doped cuprates is dominated by the "strange metal" phase that shows a linear temperature (T) dependence of the resistivity persisting down to the lowest T. For underdoped cuprates, this behavior is lost below the pseudogap temperature T*, where charge density waves (CDWs), together with other intertwined local orders, characterize the ground state. We found that the T-linear resistivity of highly strained, ultrathin, underdoped YBa2Cu3O7­Î´ films is restored when the CDW amplitude, detected by resonant inelastic x-ray scattering, is suppressed. This observation suggests an intimate connection between the onset of CDWs and the departure from T-linear resistivity in underdoped cuprates. Our results illustrate the potential of using strain control to manipulate the ground state of quantum materials.

4.
Nat Commun ; 12(1): 3122, 2021 May 25.
Article in English | MEDLINE | ID: mdl-34035254

ABSTRACT

In ultrathin films of FeSe grown on SrTiO3 (FeSe/STO), the superconducting transition temperature Tc is increased by almost an order of magnitude, raising questions on the pairing mechanism. As in other superconductors, antiferromagnetic spin fluctuations have been proposed to mediate SC making it essential to study the evolution of the spin dynamics of FeSe from the bulk to the ultrathin limit. Here, we investigate the spin excitations in bulk and monolayer FeSe/STO using resonant inelastic x-ray scattering (RIXS) and quantum Monte Carlo (QMC) calculations. Despite the absence of long-range magnetic order, bulk FeSe displays dispersive magnetic excitations reminiscent of other Fe-pnictides. Conversely, the spin excitations in FeSe/STO are gapped, dispersionless, and significantly hardened relative to its bulk counterpart. By comparing our RIXS results with simulations of a bilayer Hubbard model, we connect the evolution of the spin excitations to the Fermiology of the two systems revealing a remarkable reconfiguration of spin excitations in FeSe/STO, essential to understand the role of spin fluctuations in the pairing mechanism.

5.
Phys Rev Lett ; 123(2): 027001, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31386544

ABSTRACT

We provide a novel experimental method to quantitatively estimate the electron-phonon coupling and its momentum dependence from resonant inelastic x-ray scattering (RIXS) spectra based on the detuning of the incident photon energy away from an absorption resonance. We apply it to the cuprate parent compound NdBa_{2}Cu_{3}O_{6} and find that the electronic coupling to the oxygen half-breathing phonon branch is strongest at the Brillouin zone boundary, where it amounts to ∼0.17 eV, in agreement with previous studies. In principle, this method is applicable to any absorption resonance suitable for RIXS measurements and will help to define the contribution of lattice vibrations to the peculiar properties of quantum materials.

6.
Nano Lett ; 19(3): 1902-1907, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30746946

ABSTRACT

We present noise measurements performed on a YBa2Cu3O7-δ nanoscale weak-link-based magnetometer consisting of a superconducting quantum interference device (SQUID) galvanically coupled to a 3.5 × 3.5 mm2 pick-up loop, reaching white flux noise levels and magnetic noise levels as low as [Formula: see text] and 100 fT/[Formula: see text] at T = 77 K, respectively. The low noise is achieved by introducing grooved Dayem bridges (GDBs), a new concept of a weak link. A fabrication technique has been developed for the realization of nanoscale grooved bridges, which substitutes standard Dayem bridge weak links. The introduction of these novel key blocks reduces the parasitic inductance of the weak links and increases the differential resistance of the SQUIDs. This greatly improves the device performance, thus resulting in a reduction of the white noise.

7.
Nat Commun ; 9(1): 474, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29382837

ABSTRACT

The original version of this Article contained an error in Fig. 6b. In the top scattering process, while the positioning of both arrows was correct, the colours were switched: the first arrow was red and the second arrow was blue, rather than the correct order of blue then red.

8.
Nat Commun ; 9(1): 137, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29305576

ABSTRACT

The original version of this Article omitted the following from the Acknowledgements:"This work was partly supported by the Research Council of Norway through its Centres of Excellence funding scheme, project number 262633, QuSpin."This has now been corrected in both the PDF and HTML versions of the article.

9.
Nat Commun ; 8(1): 2019, 2017 12 08.
Article in English | MEDLINE | ID: mdl-29222507

ABSTRACT

Topological superconductivity is central to a variety of novel phenomena involving the interplay between topologically ordered phases and broken-symmetry states. The key ingredient is an unconventional order parameter, with an orbital component containing a chiral p x + ip y wave term. Here we present phase-sensitive measurements, based on the quantum interference in nanoscale Josephson junctions, realized by using Bi2Te3 topological insulator. We demonstrate that the induced superconductivity is unconventional and consistent with a sign-changing order parameter, such as a chiral p x + ip y component. The magnetic field pattern of the junctions shows a dip at zero externally applied magnetic field, which is an incontrovertible signature of the simultaneous existence of 0 and π coupling within the junction, inherent to a non trivial order parameter phase. The nano-textured morphology of the Bi2Te3 flakes, and the dramatic role played by thermal strain are the surprising key factors for the display of an unconventional induced order parameter.

SELECTION OF CITATIONS
SEARCH DETAIL
...