Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Med ; 5(3): 101433, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38401547

ABSTRACT

Inclusion of defined quantities of the two major surface proteins of influenza virus, hemagglutinin (HA) and neuraminidase (NA), could benefit seasonal influenza vaccines. Recombinant HA and NA multimeric proteins derived from three influenza serotypes, H1N1, H3N2, and type B, are surface displayed on nanoliposomes co-loaded with immunostimulatory adjuvants, generating "hexaplex" particles that are used to immunize mice. Protective immune responses to hexaplex liposomes involve functional antibody elicitation against each included antigen, comparable to vaccination with monovalent antigen particles. When compared to contemporary recombinant or adjuvanted influenza virus vaccines, hexaplex liposomes perform favorably in many areas, including antibody production, T cell activation, protection from lethal virus challenge, and protection following passive sera transfer. Based on these results, hexaplex liposomes warrant further investigation as an adjuvanted recombinant influenza vaccine formulation.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Mice , Animals , Humans , Hemagglutinins , Neuraminidase/genetics , Influenza A Virus, H3N2 Subtype , Liposomes , Adjuvants, Immunologic , Vaccines, Synthetic
2.
Adv Healthc Mater ; 12(21): e2300224, 2023 08.
Article in English | MEDLINE | ID: mdl-37031161

ABSTRACT

Proteinaceous nanoparticles constitute efficient antigen delivery systems in vaccine formulations due to their size and repetitive nature that mimic most invading pathogens and promote immune activation. Nonetheless, the coadministration of an adjuvant with subunit nanovaccines is usually required to induce a robust, long-lasting, and protective immune response. Herein, the protein Curli-specific gene A (CsgA), which is known to self-assemble into nanofilaments contributing to bacterial biofilm, is exploited to engineer an intrinsically immunostimulatory antigen delivery platform. Three repeats of the M2e antigenic sequence from the influenza A virus matrix 2 protein are merged to the N-terminal domain of engineered CsgA proteins. These chimeric 3M2e-CsgA spontaneously self-assemble into antigen-displaying cross-ß-sheet nanofilaments that activate the heterodimeric toll-like receptors 2 and 1. The resulting nanofilaments are avidly internalized by antigen-presenting cells and stimulate the maturation of dendritic cells. Without the need of any additional adjuvants, both assemblies show robust humoral and cellular immune responses, which translate into complete protection against a lethal experimental infection with the H1N1 influenza virus. Notably, these CsgA-based nanovaccines induce neither overt systemic inflammation, nor reactogenicity, upon mice inoculation. These results highlight the potential of engineered CsgA nanostructures as self-adjuvanted, safe, and versatile antigen delivery systems to fight infectious diseases.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Animals , Mice , Humans , Autoantigens , Adjuvants, Immunologic , Viral Matrix Proteins , Antibodies, Viral , Mice, Inbred BALB C
3.
Nanomaterials (Basel) ; 10(5)2020 May 25.
Article in English | MEDLINE | ID: mdl-32466176

ABSTRACT

Life-inspired protein supramolecular assemblies have recently attracted considerable attention for the development of next-generation vaccines to fight against infectious diseases, as well as autoimmune diseases and cancer. Protein self-assembly enables atomic scale precision over the final architecture, with a remarkable diversity of structures and functionalities. Self-assembling protein nanovaccines are associated with numerous advantages, including biocompatibility, stability, molecular specificity and multivalency. Owing to their nanoscale size, proteinaceous nature, symmetrical organization and repetitive antigen display, protein assemblies closely mimic most invading pathogens, serving as danger signals for the immune system. Elucidating how the structural and physicochemical properties of the assemblies modulate the potency and the polarization of the immune responses is critical for bottom-up design of vaccines. In this context, this review briefly covers the fundamentals of supramolecular interactions involved in protein self-assembly and presents the strategies to design and functionalize these assemblies. Examples of advanced nanovaccines are presented, and properties of protein supramolecular structures enabling modulation of the immune responses are discussed. Combining the understanding of the self-assembly process at the molecular level with knowledge regarding the activation of the innate and adaptive immune responses will support the design of safe and effective nanovaccines.

4.
Front Immunol ; 10: 22, 2019.
Article in English | MEDLINE | ID: mdl-30733717

ABSTRACT

The respiratory mucosa is the primary portal of entry for numerous viruses such as the respiratory syncytial virus, the influenza virus and the parainfluenza virus. These pathogens initially infect the upper respiratory tract and then reach the lower respiratory tract, leading to diseases. Vaccination is an affordable way to control the pathogenicity of viruses and constitutes the strategy of choice to fight against infections, including those leading to pulmonary diseases. Conventional vaccines based on live-attenuated pathogens present a risk of reversion to pathogenic virulence while inactivated pathogen vaccines often lead to a weak immune response. Subunit vaccines were developed to overcome these issues. However, these vaccines may suffer from a limited immunogenicity and, in most cases, the protection induced is only partial. A new generation of vaccines based on nanoparticles has shown great potential to address most of the limitations of conventional and subunit vaccines. This is due to recent advances in chemical and biological engineering, which allow the design of nanoparticles with a precise control over the size, shape, functionality and surface properties, leading to enhanced antigen presentation and strong immunogenicity. This short review provides an overview of the advantages associated with the use of nanoparticles as vaccine delivery platforms to immunize against respiratory viruses and highlights relevant examples demonstrating their potential as safe, effective and affordable vaccines.


Subject(s)
Nanoparticles , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/virology , Theranostic Nanomedicine , Viral Vaccines/immunology , Administration, Intranasal , Animals , Host-Pathogen Interactions/immunology , Humans , Immunity, Mucosal , Immunization , Nanoparticles/chemistry , Nanotechnology , Polymers , Respiratory Mucosa/immunology , Respiratory Mucosa/virology , Theranostic Nanomedicine/methods , Vaccination , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/immunology , Viral Vaccines/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...