Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(7): e0200084, 2018.
Article in English | MEDLINE | ID: mdl-29969478

ABSTRACT

A simple and low-cost method to fabricate copper conductive patterns at low temperature is critical for printed electronics. Low-temperature spray-pyrolysis of copper-alkanolamine complex solution shows high potential for this application. However, the produced copper patterns exhibit a granular structure consisting of connected fine copper particles. In this work, low-temperature spray-pyrolysis of copper formate-diethanolamine complex solution under N2 flow at a temperature of 200 °C was investigated. The effects of spraying conditions on microstructure and electrical properties of the patterns were examined. Our results revealed that the spraying rate is a critical parameter determining the degree of sintering and electrical resistivity of the patterns. A low spraying rate facilitates sintering, and hence well-sintered copper patterns with the lowest resistivity of 6.12 µΩ.cm (3.6 times of bulk copper) on a polyimide substrate could be fabricated.


Subject(s)
Copper/chemistry , Electric Conductivity , Ethanolamines/chemistry , Pyrolysis , Hot Temperature , Models, Molecular , Molecular Conformation , Solutions
2.
Sci Rep ; 8(1): 11273, 2018 Jul 26.
Article in English | MEDLINE | ID: mdl-30050161

ABSTRACT

Zinc-air flow batteries exhibit high energy density and offer several appealing advantages. However, their low efficiency of zinc utilization resulted from passivation and corrosion of the zinc anodes has limited their broad application. In this work, ethanol, which is considered as an environmentally friendly solvent, is examined as an electrolyte additive to potassium hydroxide (KOH) aqueous electrolyte to improve electrochemical performance of the batteries. Besides, the effects of adding different percentages of ethanol (0-50% v/v) to 8 M KOH aqueous electrolyte were investigated and discussed. Cyclic voltammograms revealed that the presence of 5-10% v/v ethanol is attributed to the enhancement of zinc dissolution and the hindrance of zinc anode passivation. Also, potentiodynamic polarization and electrochemical impedance spectroscopy confirmed that adding 5-10% v/v ethanol could effectively suppress the formation of passivating layers on the active surface of the zinc anodes. Though the addition of ethanol increased solution resistance and hence slightly decreased the discharge potential of the batteries, a significant enhancement of discharge capacity and energy density could be sought. Also, galvanostatic discharge results indicated that the battery using 10% v/v ethanol electrolyte exhibited the highest electrochemical performance with 30% increase in discharge capacity and 16% increase in specific energy over that of KOH electrolyte without ethanol.

3.
Sci Rep ; 8(1): 7627, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29769599

ABSTRACT

Yttrium (Y) is an essential lanthanide rare earth element and can be effectively extracted and purified using a hollow fiber supported liquid membrane (HFSLM) system. However, the stability of HFSLM system is a significant challenge. Pseudoemulsion-hollow fiber strip dispersion (PEHFSD) system, providing excellent stability, is attracting research attention. In this work, the recovery of Y(III) by PEHFSD system using di(2-ethylhexyl)phosphoric acid (D2EHPA) as a carrier was investigated. The effects of several operating parameters, including the initial concentration of Y(III) in the feed phase, the flow rate of feed, the stirring speed and the volumetric ratio of feed to strip on Y(III) separation were studied. The Y(III) transport was analyzed on the concentration ratio of Y(III) ions, percent extraction, percent stripping and overall mass transfer coefficient (K p ). The PEHFSD system outperformed HFSLM system regarding separation performance and stability. K p of HFSLM system decreased after the second run, but K p of PEHFSD system remained constant even at the fifth run. The dispersed droplets in the strip dispersion phase in the PEHFSD system enhanced separation performance and stability of the membrane module.

SELECTION OF CITATIONS
SEARCH DETAIL
...