Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS J ; 289(1): 121-139, 2022 01.
Article in English | MEDLINE | ID: mdl-34270864

ABSTRACT

Matrix metalloproteinase-13 (MMP-13) is a uniquely important collagenase that promotes the irreversible destruction of cartilage collagen in osteoarthritis (OA). Collagenase activation is a key control point for cartilage breakdown to occur, yet our understanding of the proteinases involved in this process is limited. Neutrophil elastase (NE) is a well-described proteoglycan-degrading enzyme which is historically associated with inflammatory arthritis, but more recent evidence suggests a potential role in OA. In this study, we investigated the effect of neutrophil elastase on OA cartilage collagen destruction and collagenase activation. Neutrophil elastase induced significant collagen destruction from human OA cartilage ex vivo, in an MMP-dependent manner. In vitro, neutrophil elastase directly and robustly activated pro-MMP-13, and N-terminal sequencing identified cleavage close to the cysteine switch at 72 MKKPR, ultimately resulting in the fully active form with the neo-N terminus of 85 YNVFP. Mole-per-mole, activation was more potent than by MMP-3, a classical collagenase activator. Elastase was detectable in human OA synovial fluid and OA synovia which displayed histologically graded evidence of synovitis. Bioinformatic analyses demonstrated that, compared with other tissues, control cartilage exhibited remarkably high transcript levels of the major elastase inhibitor, (AAT) alpha-1 antitrypsin (gene name SERPINA1), but these were reduced in OA. AAT was located predominantly in superficial cartilage zones, and staining enhanced in regions of cartilage damage. Finally, active MMP-13 specifically inactivated AAT by removal of the serine proteinase cleavage/inhibition site. Taken together, this study identifies elastase as a novel activator of pro-MMP-13 that has relevance for cartilage collagen destruction in OA patients with synovitis.


Subject(s)
Inflammation/genetics , Leukocyte Elastase/genetics , Matrix Metalloproteinase 13/genetics , Osteoarthritis/genetics , alpha 1-Antitrypsin/genetics , Cysteine/genetics , Humans , Inflammation/metabolism , Inflammation/pathology , Matrix Metalloproteinase 3/genetics , Neutrophils/enzymology , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteochondrodysplasias/genetics , Osteochondrodysplasias/metabolism , Synovitis/genetics , Synovitis/metabolism , Synovitis/pathology , alpha 1-Antitrypsin Deficiency/genetics , alpha 1-Antitrypsin Deficiency/pathology
2.
Br J Pharmacol ; 176(1): 38-51, 2019 01.
Article in English | MEDLINE | ID: mdl-29473950

ABSTRACT

Cartilage destruction is a key characteristic of arthritic disease, a process now widely established to be mediated by metzincins such as MMPs. Despite showing promise in preclinical trials during the 1990s, MMP inhibitors for the blockade of extracellular matrix turnover in the treatment of cancer and arthritis failed clinically, primarily due to poor selectivity for target MMPs. In recent years, roles for serine proteinases in the proteolytic cascades leading to cartilage destruction have become increasingly apparent, renewing interest in the potential for new therapeutic strategies that utilize pharmacological inhibitors against this class of proteinases. Herein, we describe key serine proteinases with likely importance in arthritic disease and highlight recent advances in this field. LINKED ARTICLES: This article is part of a themed section on Translating the Matrix. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.1/issuetoc.


Subject(s)
Arthritis/drug therapy , Cartilage/drug effects , Extracellular Matrix/drug effects , Serine Proteases/metabolism , Serine Proteinase Inhibitors/pharmacology , Animals , Arthritis/metabolism , Cartilage/metabolism , Extracellular Matrix/metabolism , Humans , Serine Proteinase Inhibitors/chemistry
3.
World J Gastroenterol ; 20(30): 10305-15, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25132747

ABSTRACT

Aberrant functioning of serine proteases in inflammatory and carcinogenic processes within the gastrointestinal tract (GIT) has prompted scientists to investigate the potential of serine protease inhibitors, both natural and synthetic, as modulators of their proteolytic activities. Protease inhibitors of the Bowman-Birk type, a major protease inhibitor family in legume seeds, which inhibit potently and specifically trypsin- and chymotrypsin-like proteases, are currently being investigated as colorectal chemopreventive agents. Physiologically relevant amounts of Bowman-Birk inhibitors (BBI) can reach the large intestine in active form due to their extraordinary resistance to extreme conditions within the GIT. Studies in animal models have proven that dietary BBI from several legume sources, including soybean, pea, lentil and chickpea, can prevent or suppress carcinogenic and inflammatory processes within the GIT. Although the therapeutic targets and the action mechanism of BBI have not yet been elucidated, the emerging evidence suggests that BBI exert their preventive properties via protease inhibition; in this sense, serine proteases should be considered as primary targets in early stages of carcinogenesis. The validation of candidate serine proteases as therapeutic targets together with the identification, within the wide array of natural BBI variants, of the most potent and specific protease inhibitors, are necessary to better understand the potential of this protein family as colorectal chemopreventive agents.


Subject(s)
Anticarcinogenic Agents/therapeutic use , Colorectal Neoplasms/prevention & control , Fabaceae , Serine Proteinase Inhibitors/therapeutic use , Trypsin Inhibitor, Bowman-Birk Soybean/therapeutic use , Animals , Anticarcinogenic Agents/isolation & purification , Colorectal Neoplasms/enzymology , Drug Design , Fabaceae/chemistry , Humans , Molecular Targeted Therapy , Phytotherapy , Plants, Medicinal , Serine Proteases/metabolism , Serine Proteinase Inhibitors/isolation & purification , Trypsin Inhibitor, Bowman-Birk Soybean/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...