Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(22): 9301-9305, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38768304

ABSTRACT

The electronic structure of [OsF6]2- and PtF6 complexes was studied by means of CASSCF/NEVPT2 multiconfigurational calculations, including spin-orbital coupling, which is very relevant in the case of these metals. From these calculations, it is possible to establish that in the octahedral symmetry (Oh), the ground state is non-magnetic (Jeff = 0) because of the strong ligand field, and the interaction with paramagnetic excited states is almost negligible, resulting in a non-magnetic behavior, which is in agreement with the experimental evidence.

2.
Pharmaceutics ; 15(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36986757

ABSTRACT

Medicinal plants have been used since prehistoric times and continue to treat several diseases as a fundamental part of the healing process. Inflammation is a condition characterized by redness, pain, and swelling. This process is a hard response by living tissue to any injury. Furthermore, inflammation is produced by various diseases such as rheumatic and immune-mediated conditions, cancer, cardiovascular diseases, obesity, and diabetes. Hence, anti-inflammatory-based treatments could emerge as a novel and exciting approach to treating these diseases. Medicinal plants and their secondary metabolites are known for their anti-inflammatory properties, and this review introduces various native Chilean plants whose anti-inflammatory effects have been evaluated in experimental studies. Fragaria chiloensis, Ugni molinae, Buddleja globosa, Aristotelia chilensis, Berberis microphylla, and Quillaja saponaria are some native species analyzed in this review. Since inflammation treatment is not a one-dimensional solution, this review seeks a multidimensional therapeutic approach to inflammation with plant extracts based on scientific and ancestral knowledge.

3.
Front Chem ; 7: 454, 2019.
Article in English | MEDLINE | ID: mdl-31297366

ABSTRACT

Re(I) complexes have exposed highly suitable properties for cellular imaging (especially for fluorescent microscopy) such as low cytotoxicity, good cellular uptake, and differential staining. These features can be modulated or tuned by modifying the ligands surrounding the metal core. However, most of Re(I)-based complexes have been tested for non-walled cells, such as epithelial cells. In this context, it has been proposed that Re(I) complexes are inefficient to stain walled cells (i.e., cells protected by a rigid cell wall, such as bacteria and fungi), presumably due to this physical barrier hampering cellular uptake. More recently, a series of studies have been published showing that a suitable combination of ligands is useful for obtaining Re(I)-based complexes able to stain walled cells. This review summarizes the main characteristics of different fluorophores used in bioimage, remarking the advantages of d6-based complexes, and focusing on Re(I) complexes. In addition, we explored different structural features of these complexes that allow for obtaining fluorophores especially designed for walled cells (bacteria and fungi), with especial emphasis on the ligand choice. Since many pathogens correspond to bacteria and fungi (yeasts and molds), and considering that these organisms have been increasingly used in several biotechnological applications, development of new tools for their study, such as the design of new fluorophores, is fundamental and attractive.

4.
Phys Chem Chem Phys ; 21(16): 8428-8433, 2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30945710

ABSTRACT

DFT calculations were carried out on a series of tetrahedral 16-atom superatomic clusters having 20 or 18 jellium electrons (je) and structurally related to Au20, namely, [M16]4-/2- (M = Cu, Ag, and Au) and [M4'M12'']0/2+ (M' = Zn, Cd, Hg; M'' = Cu, Ag, Au). While the bare homonuclear 20-je species required further stabilization to be isolated, their 18-je counterparts exhibited better stability. Lowering the electron count led to structural modification from a compact structure (20-je) to a hollow sphere (18-je). Such a change could be potentially controlled by tuning redox properties. Among the 20-je heteronuclear [M4'M12''] neutral series, [Zn4Au12] appeared to meet the best stability criteria, but their 18-je relatives [M4'M12'']+, in particular [Zn4Cu12]2+ and [Cd4Au12]2+, offered better opportunities for obtaining stable species. Such species exhibit the smallest models for the M(111) surface of fcc metals, which expose designing rules towards novel high-dopant-ratio clusters as building blocks of nanostructured materials.

5.
J Phys Chem B ; 123(15): 3219-3231, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30925049

ABSTRACT

The design of organometallic complexes used as selective intercalators to bind and react at DNA mismatch sites has concentrated efforts in the last few years. In this context, lanthanides have received attention to be employed as active optical centers due to their spectroscopic properties. Despite the fact that there are several experimental data about synthesis and DNA binding of these compounds, theoretical analyses describing their interaction with DNA are scarce. To understand the binding to regular and mismatched DNA sequences as well as to determine the effect of the intercalation on the spectroscopic properties of the complexes, a complete theoretical study going from classical to relativistic quantum mechanics calculations has been performed on some lanthanide complexes with phenanthroline derivatives synthesized and characterized herein, viz. [Nd(NO3)3(H2O)(dppz-R)] with R = H, NO2-, CN- and their [Nd(NO3)3(H2O)(dpq)] analogue, which was computationally modeled. The results were in correct agreement with the available experimental data showing that dppz complexes have higher binding affinities to DNA than dpq one and supporting the idea that these complexes are not selective to mismatch sites in the sampled time scale. Finally, the spectroscopic analysis evidence an intercalative binding mode and made possible the elucidation of the emission mechanism of these systems. This approach is proposed as a benchmark study to extend this methodology on similar systems and constitutes the first theoretical insight in the interaction between DNA and lanthanide complexes.


Subject(s)
DNA/chemistry , DNA/genetics , Density Functional Theory , Neodymium/chemistry , Base Sequence , Models, Molecular , Nucleic Acid Conformation
6.
Inorg Chem ; 58(5): 3457-3465, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30788962

ABSTRACT

The reaction of SmI2 with dibenzo-30-crown-10 (DB30C10), followed by metathesis with [Bu4N][BPh4], allows for the isolation of [SmII(DB30C10)][BPh4]2 as bright-red crystals in good yield. Exposure of [Sm(DB30C10)]2+ to solvents containing trace water results in the conversion to the dinuclear SmIII complex, Sm2(DB30C10)(OH)2I4. Structural analysis of both complexes shows substantial rearrangement of the crown ether from a folded, Pac-Man form with SmII to a twisted conformation with SmIII. The optical properties of [SmII(DB30C10)][BPh4]2 exhibit a strong temperature dependence and change from broad-band absorption features indicative of domination by 5d states to fine features characteristic of 4f → 4f transitions at low temperatures. Examination of the electronic structure of these complexes via ab initio wave function calculations (SO-CASSCF) shows that the ground state of SmII in [SmII(DB30C10)]2+ is a 4f6 state with low-lying 4f55d1 states, where the latter states have been lowered in energy by ∼12 000 cm-1 with respect to the free ion. The decacoordination of the SmII cation by the crown ether is responsible for this alteration in the energies of the excited state and demonstrates the ability to tune the electronic structure of SmII.

7.
Nanomaterials (Basel) ; 8(11)2018 Nov 17.
Article in English | MEDLINE | ID: mdl-30453604

ABSTRACT

ß-Cyclodextrin (ßCD), the less water soluble of the cyclodextrins, has been used as a capping agent in the preparation of semiconductor nanocrystals or quantum dots (QDs). Nevertheless, no reports have been found in the use of the highly water-soluble polymer of this, prepared by the crosslinking of the ßCD units with epichlorohydrin in basic medium (ßCDP). This polymer, besides to overcome the low solubility of the ßCD, increases the inclusion constant of the guest; two parameters that deserve its use as capping agent, instead of the native cyclodextrin. In the present manuscript, we afforded the in-situ aqueous preparation of cadmium telluride (CdTe) QDs capped with ßCDP. The polymer influence on the photoluminescent properties of the nanocrystals was analyzed. The ßCDP controls the nanocrystals growth during the Oswald ripening stage. Consequently, the CdTe capped ßCDP QDs showed lower Stokes-shift values, higher photoluminescent efficiency, and narrower size distribution than for nanocrystals obtained in the absence of polymer. Transmission electron microscopy (TEM) micrographs and energy dispersive X-ray spectroscopy (EDS) analysis revealed the composition and crystallinity of the CdTe QDs. This ßCDP capped CdTe QDs is a potential scaffold for the supramolecular modification of QDs surface.

8.
Front Chem ; 6: 345, 2018.
Article in English | MEDLINE | ID: mdl-30211148

ABSTRACT

In this study, we explored new properties of the bioinspired pyridine benzimidazole compound B2 (2,4-di-tert-butyl-6-(3H-imidazo[4,5-c]pyridine-2-yl)phenol) regarding its potential use as a differential biomarker. For that, we performed 1D 1HNMR (TOCSY), UV-Vis absorption spectra in different organic solvents, voltammetry profile (including a scan-rate study), and TD-DFT calculations that including NBO analyses, to provide valuable information about B2 structure and luminescence. In our study, we found that the B2 structure is highly stable, where the presence of an intramolecular hydrogen bond (IHB) seems to have a crucial role in the stability of luminescence, and its emission can be assigned as fluorescence. In fact, we found that the relatively large Stokes Shift observed for B2 (around 175 nm) may be attributed to the stability of the B2 geometry and the strength of its IHB. On the other hand, we determined that B2 is biocompatible by cytotoxicity experiments in HeLa cells, an epithelial cell line. Furthermore, in cellular assays we found that B2 could be internalized by passive diffusion in absence of artificial permeabilization at short incubation times (15 min to 30 min). Fluorescence microscopy studies confirmed that B2 accumulates in the endoplasmic reticulum (ER) and Golgi apparatus, two organelles involved in the secretory pathway. Finally, we determined that B2 exhibited no noticeable blinking or bleaching after 1 h of continuous exposure. Thus, B2 provides a biocompatible, rapid, simple, and efficient way to fluorescently label particular organelles, producing similar results to that obtained with other well-established but more complex methods.

9.
Chemistry ; 24(68): 18059-18067, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30199585

ABSTRACT

The suitability of aryloxide ligands for stabilizing +2 oxidation states of Sc and Y has been examined and EPR evidence indicating the first O-donor complexes of ScII and YII has been obtained, as well as an X-ray crystal structure of a ScII aryloxide complex. The trivalent rare-earth metal aryloxide precursors, Ln(OAr')3 , 1-Ln (Ln=Sc, Y, Gd, Dy, Ho, Er; OAr'=OC6 H2 tBu2 -2,6-Me-4), were synthesized from the corresponding rare-earth metal trichlorides and LiOAr'⋅OEt2 . Reduction of THF solutions of 1-Ln with potassium graphite in the presence of 2.2.2-cryptand (crypt) yielded dark-colored solutions, 2-Ln, whose EPR spectra at 77 K are characteristic of the LnII ions: a two-line spectrum (g∥ =1.99, g□ =1.97, Aave =154 G) for 2-Y and an eight-line spectrum (gave =2.01 and Aave =291 G) for 2-Sc. Solutions of 2-Y decompose within one minute at room temperature, wheras 2-Sc persists up to 40 min at room temperature. 2-Sc was identified by X-ray crystallography as [K(crypt)][Sc(OAr')3 ], which has a trigonal-planar arrangement of oxygen-donor atoms around ScII . Analogous reductions of 1-Ln for Ln=Gd, Dy, Ho, and Er also gave dark solutions of limited stability. Theoretical analysis using time-dependent density functional theory (TD-DFT) along with complete active space self-consistent field (CASSCF) methods, and structural analysis with the Guzei ligand solid angle G-parameter method are presented.

10.
Front Chem ; 6: 312, 2018.
Article in English | MEDLINE | ID: mdl-30109223

ABSTRACT

It has been reported that the structure of the Schiff bases is fundamental for their function in biomedical applications. Pyridine Schiff bases are characterized by the presence of a pyridine and a phenolic ring, connected by an azomethine group. In this case, the nitrogen present in the pyridine is responsible for antifungal effects, where the phenolic ring may be also participating in this bioactivity. In this study, we synthesized two new pyridine Schiff Bases: (E)-2-[(3-Amino-pyridin-4-ylimino)-methyl]-4,6-difluoro-phenol (F1) and (E)- 2-[(3-Amino-pyridin-4-ylimino)-methyl]-6-fluoro-phenol (F2), which only differ in the fluorine substitutions in the phenolic ring. We fully characterized both F1 and F2 by FTIR, UV-vis, 1H; 13C; 19F-NMR, DEPT, HHCOSY, TOCSY, and cyclic voltammetry, as well as by computational studies (DFT), and NBO analysis. In addition, we assessed the antifungal activity of both F1 (two fluorine substitution at positions 4 and 6 in the phenolic ring) and F2 (one fluorine substitution at position 6 in the phenolic ring) against yeasts. We found that only F1 exerted a clear antifungal activity, showing that, for these kind of Schiff bases, the phenolic ring substitutions can modulate biological properties. In addition, we included F1 and F2 into in epichlorohydrin-ß-cyclodextrin polymer (ßCD), where the Schiff bases remained inside the ßCD as determined by the ki , TGA, DSC, and SBET. We found that the inclusion in ßCD improved the solubility in aqueous media and the antifungal activity of both F1 and F2, revealing antimicrobial effects normally hidden by the presence of common solvents (e.g., DMSO) with some cellular inhibitory activity. The study of structural prerequisites for antimicrobial activity, and the inclusion in polymers to improve solubility, is important for the design of new drugs.

11.
Inorg Chem ; 57(9): 5120-5132, 2018 May 07.
Article in English | MEDLINE | ID: mdl-29693385

ABSTRACT

This work presents a theoretical protocol to analyze the symmetry effect on the allowed character of the transitions and to estimate the probability of energy transfer in lanthanide(III) complexes. For this purpose, a complete study was performed based on the multireference CASSCF/PT2 technique along with TDDFT, to build the energy level diagrams and determine the spectral overlap integrals, respectively. This approach was applied on a series of LnIII complexes, viz. [LnCl3(DMF)2(Dpq)]/[Ln(NO3)3(DMF)2(Dpq)], where Ln = SmIII, TbIII, ErIII/EuIII, NdIII and dpq = dipyridoquinoxaline, synthesized and characterized by Patra et al. ( Dalton Trans. 2015 , 44 ( 46 ), 19844 - 19855 ; CrystEngComm 2016 , 18 ( 23 ), 4313 - 4322 ; Inorg. Chim. Acta 2016 , 451 , 73 - 81 ). A fragmentation scheme was applied where both the ligand and the lanthanide fragments were treated separately but at the same level of theory. The symmetry analysis only partially reproduced the expected results, and a more detailed analysis of the crystal field became necessary. On the other hand, the most probable energy transfer pathways that take place in the complexes were elucidated from the energy gaps between the ligand-localized triplet state and the emitting levels of the lanthanide fragments. These gaps, which are related to the energy transfer rate, properly reproduced the trend reported experimentally for the best and worst yields. Finally, the spectral overlap integral was calculated from the emission spectra of the dpq ligand and the absorption spectra of the lanthanide fragment. The obtained values are in good agreement with the quantum yields calculated for the systems. The most remarkable aspect of this protocol was its ability to explain the emission and nonemission of the studied compounds.

12.
Dalton Trans ; 47(19): 6666-6671, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29675535

ABSTRACT

Three new types of transition metal carboranylamidinate complexes are reported. The tetranuclear Mn(ii) complex Mn4Cl6[(o-C2B10H10)C(NiPr)(NHiPr)]2(THF)4·THF (2) was prepared by treatment of anhydrous MnCl2 with Li[(o-C2B10H10)C(NiPr)(NHiPr)] ([double bond, length as m-dash]Li[HLiPr]) in THF, while the analogous reaction with FeCl2 afforded ionic [Li(DME)3][FeCl2{(o-C2B10H10)C(NiPr)(NHiPr)}] (3). The dinuclear Mo(ii) complex Mo2[(o-C2B10H10)C(NiPr)(NHiPr)]2(OAc)2·2THF (4), obtained from Mo2(OAc)4 and 2 equiv. of Li[HLiPr], represents the first example of a M-M multiple bond stabilized by carboranylamidinate ligands. All title compounds were structurally characterized by single-crystal X-ray diffraction. The M-M bonding in compound 4 has been further elucidated through Complete Active Space Self Consistent Field (CASSCF) calculations.

13.
Phys Chem Chem Phys ; 20(6): 4038-4049, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29354822

ABSTRACT

Research on heavy actinides has experienced an increased interest in the last few years due to new synthetic techniques and recent technological advances that have allowed for obtaining important information even from very small samples. This area presents challenges not only from the experimental point of view but also from the theoretical perspective. This work deals with a multiconfigurational CASSCF and NEVPT2 benchmark study based on a two-step methodology that considers first correlation effects and then the spin-orbit coupling applied to berkelium (Bk), californium (Cf), einsteinium (Es) and fermium (Fm) hexahalides. Optical properties, such as f → d transitions and crystal-field parameters, have been calculated and rationalized. The results for these trivalent actinides indicate that the electronic structure of the low-lying states is reproduced accurately with small basis sets. The ground-state multiplets are isolated, in the same manner as their isoelectronic lanthanide counterparts. In the case of tetravalent berkelium, the picture is different regarding the electronic structure where crystal-field theory fails due to considerable ligand-to-metal charge transfer contributions to the ground state.

14.
Carbohydr Polym ; 175: 530-537, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28917897

ABSTRACT

Gold nanoparticles (AuNPs) can be prepared from the reduction of Au(III) with cyclodextrins acting as both, reducing and capping agent. It has been stated that a basic medium (pH=9-12) is a mandatory condition to achieve such reduction. We demonstrated, for the first time, the reduction of Au(III) by a crosslinked ß-cyclodextrin-epichlorohydrin polymer (ßCDP) in acid medium (pH ∼3). The coordination of Au(III) to the ßCD in ßCDP polymer required a ßCD:[AuCl4]- ratio of 4:1. The same ratio was necessary to achieve a 50% of the reduction of Au(III) to Au0 within the first 24h of reaction. During this initial time, the reaction showed a concentration-dependent reduction rate while for longer times the reduction rate was diffusion-dependent. An overall mechanism to explain this dependency has been proposed. The 13C NMR spectrum identified the oxidation of the COH groups to carboxylic ones by recording a signal at 175.6ppm. Gold nanoparticles cores (AuNPs) with a diameter of 34.2±7.7nm, determined by Transmission Electron Microscopy (TEM), was prepared by refluxing HAuCl4 in an aqueous solution of ßCDP. The AuNPs core was capped by dimers of the ßCDP polymer as determined by Dynamic Light Scattering measurements.

15.
J Am Chem Soc ; 139(38): 13361-13375, 2017 09 27.
Article in English | MEDLINE | ID: mdl-28817775

ABSTRACT

The reaction of 249Bk(OH)4 with iodate under hydrothermal conditions results in the formation of Bk(IO3)3 as the major product with trace amounts of Bk(IO3)4 also crystallizing from the reaction mixture. The structure of Bk(IO3)3 consists of nine-coordinate BkIII cations that are bridged by iodate anions to yield layers that are isomorphous with those found for AmIII, CfIII, and with lanthanides that possess similar ionic radii. Bk(IO3)4 was expected to adopt the same structure as M(IO3)4 (M = Ce, Np, Pu), but instead parallels the structural chemistry of the smaller ZrIV cation. BkIII-O and BkIV-O bond lengths are shorter than anticipated and provide further support for a postcurium break in the actinide series. Photoluminescence and absorption spectra collected from single crystals of Bk(IO3)4 show evidence for doping with BkIII in these crystals. In addition to luminescence from BkIII in the Bk(IO3)4 crystals, a broad-band absorption feature is initially present that is similar to features observed in systems with intervalence charge transfer. However, the high-specific activity of 249Bk (t1/2 = 320 d) causes oxidation of BkIII and only BkIV is present after a few days with concomitant loss of both the BkIII luminescence and the broadband feature. The electronic structure of Bk(IO3)3 and Bk(IO3)4 were examined using a range of computational methods that include density functional theory both on clusters and on periodic structures, relativistic ab initio wave function calculations that incorporate spin-orbit coupling (CASSCF), and by a full-model Hamiltonian with spin-orbit coupling and Slater-Condon parameters (CONDON). Some of these methods provide evidence for an asymmetric ground state present in BkIV that does not strictly adhere to Russel-Saunders coupling and Hund's Rule even though it possesses a half-filled 5f 7 shell. Multiple factors contribute to the asymmetry that include 5f electrons being present in microstates that are not solely spin up, spin-orbit coupling induced mixing of low-lying excited states with the ground state, and covalency in the BkIV-O bonds that distributes the 5f electrons onto the ligands. These factors are absent or diminished in other f7 ions such as GdIII or CmIII.

16.
Inorg Chem ; 56(15): 9200-9208, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28692259

ABSTRACT

A theoretical protocol to study the sensitization and emission mechanism in lanthanide compounds on the basis of multireference CASSCF/PT2 calculations is proposed and applied to [Eu(NO3)3(dppz-CN)] and [Eu(NO3)3(dppz-NO2)] compounds synthesized and characterized herein. The method consists of a fragmentation scheme where both the ligand and the lanthanide fragments were calculated separately but at the same level of theory, using ab initio wave-function-based methods which are adequate for the treatment of quasi-degenerate states. This is based on the fact that the absorption is ligand-localized and the emission is europium-centered. This characteristic allowed us to describe the most probable energy transfer pathways that take place in the complexes, which involved an ISC between the S1 to T1 ligand states, energy transfer to 5D2 in the lanthanide fragment, and further 5D0 → 7FJ emission. For both compounds, the triplet and 5D2 states were determined at the CASPT2 level to be around ∼26000 and ∼22400 cm-1, respectively. This difference is in the optimal range for the energy transfer process. Finally, the emissive state 5D0 was found at ∼18000 cm-1 and the emission bands in the range 550-700 nm, in quite good agreement with the experimental results.

17.
Chemistry ; 23(47): 11330-11337, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28628726

ABSTRACT

Coinage-metal atomically precise nanoclusters are made of a well-defined metallic core embedded in a ligand-protecting outer shell. Whereas gold derivatives are particularly well documented, examples of silver nanoclusters are somewhat limited and copper species remain particularly scare. Our DFT relativistic calculations on superatomic metallic cores indicate that copper species are almost as stable as gold clusters and more stable than their silver counterparts. Thus, for silver superatomic cores, the role of the stabilizing ligands is more crucial in the stabilization of the overall structure, in comparison to copper and gold. Hence, the chemistry of the earlier counterparts of gold, especially copper, should grow quickly with at least characterizations of species related to that found in the heavier elements in the triad, which requires tackling synthetic challenges. Time-dependent (TD)-DFT calculations show that with an increase of the cluster core nuclearity, the absorption bands are redshifted, allowing us to differentiate between the clusters types. Moreover, the optical properties of the silver cores are fairly different from that of their Cu and Au relatives.

18.
Phys Chem Chem Phys ; 18(48): 33218-33225, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-27892559

ABSTRACT

In this contribution, a computational study of equatorial bound tetranuclear macrocycle (butylene linked) [LnZn(HOMBu)]3+ (Ln = La3+, Ce3+) complexes was carried out. Here, the electronic structure, bonding interaction and excitation energies were studied within the relativistic density functional theory framework. From the electronic structure analysis, the frontier molecular orbitals (FMOs) were strongly localized in the d-orbitals of the Zn centers and the f-orbitals of the lanthanide ions. Besides, the inner MOs were found to exhibit a π-character from the organic part of the macrocyclic chain. EDA-NOCV was used as a tool for evaluating the bonding interaction, taking the trinuclear metallomacrocycle (ZnHOMBu) and the lanthanide center as fragments. This analysis showed that the interaction between these fragments was slightly covalent; with this covalency being the result of a charge transfer from the metallomacrocyclic ring to the lanthanide. This phenomenon was observed in the deformation density channels obtained from the EDA-NOCV study; in which π- and σ-charge transfer was observed. Finally, the TD-DFT study of the excitation energies evidenced three sets of bands: the first set with the highest intensity represented the ligand to metal charge transfer bands; the second set could be attributed to the 3d-4f electronic transitions between the metal centers; and the third set represented the f-f bands found for the open-shell cerium complex. This class of complexes accomplishes the "antenna effect" principle, which states that highly absorptive transition-metal (TM) complexes can be used to enhance the luminescence of poorly emissive systems, and are introduced in this study as self-sensitizer bimetallic d-f systems with potential applications in near infra-red (NIR) technologies.

19.
Phys Chem Chem Phys ; 18(42): 29516-29525, 2016 Oct 26.
Article in English | MEDLINE | ID: mdl-27747348

ABSTRACT

The need of deeper insights regarding the inner working of catalysts represents a current challenge in the search of new ways to tune their activities towards new chemical transformations. Within this field, metallophthalocyanines-based (MPc) electrocatalysis has gained tremendous attention due to their versatility, low cost, great stability and excellent turn-over properties. In this concern, here we present a quantum chemical study of the formation of supramolecular complexes based on the adsorption of MPcs on gold substrates, and the effect of the substrate on their electrocatalytic properties. For this purpose, we used iron- (FePc), cobalt- (CoPc) and copper-phthalocyanines (CuPc). To model the gold surface we used two gold clusters of different sizes, given by Au26 and Au58 accounting for gold electrode Au(111) surface. Thus, both electronic and binding strength features of the adsorption process between the complexes were analyzed in detail in order to gain a deeper description of the nature of the MPc-Au(111) formation, by using Density Functional Theory (DFT) calculations, at the PBE and TPSS levels including the dispersive contribution according to the Grimme approach (D3). Our results show that dispersion forces rule the MPc-gold interaction, with binding strengths ranging between 61 and 153 kcal mol-1, in agreement to the reported experimental data. To provide a detailed picture of our findings we used the non-covalent interactions index (NCIs) analysis, which offers additional chemical insights regarding the forces that control their interaction strength. Finally, our calculations revealed that among the three MPcs, CuPc required less energy for its oxidation. However, the removal of the electron involves a tremendous decrease of the MPc-gold surface interaction strength thus suggesting its desorption, which would prevent the required reversibility of the redox reaction, explaining its low performance observed experimentally.

20.
J Mol Model ; 22(1): 25, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26744295

ABSTRACT

We report a computational study of a series of organic dyes built with triphenylamine (TPA) as an electron donor group. We designed a set of six dyes called (TPA-n, where n = 0-5). In order to enhance the electron-injection process, the electron-donor effect of some specific substituent was studied. Thus, we gave insights into the rational design of organic TPA-based chromophores for use in dye-sensitized solar cells (DSSCs). In addition, we report the HOMO, LUMO, the calculated excited state oxidized potential E(dye*)(eV) and the free energy change for electron-injection ΔGinject(eV), and the UV-visible absorption bands for TPA-n dyes by a time-dependent density functional theory (TDDFT) procedure at the B3LYP and CAM-B3LYP levels with solvent effect. The results demonstrate that the introduction of the electron-acceptor groups produces an intramolecular charge transfer showing a shift of the absorption wavelengths of TPA-n under studies. Graphical Abstract Several organic dyes TPA-n with different donors and acceptors are modeled. A strong conjugation acrros the donor and anchoring groips (TPA-n) bas been studied. Candidate TPA-3 shows a promising results.


Subject(s)
Coloring Agents/chemistry , Solar Energy , Terphenyl Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...