Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 20(3): 365-75, 2006.
Article in English | MEDLINE | ID: mdl-16372385

ABSTRACT

A new multiresidue method has been validated in cucumber matrix for the routine analysis of 130 multiclass pesticide residues by gas chromatography/triple quadrupole mass spectrometry. The pesticides were extracted with ethyl acetate. A first identification of the pesticides was based on a tandem mass spectrometric (MS/MS) screening method, which monitors a single transition for each target compound, in less than 12 min. After that, potentially non-negative samples were analyzed again by the MS/MS confirmation/quantification method, which monitors two or three MS/MS transitions for each compound, also in less than 12 min. Performance characteristics, such as trueness, precision, linear range, detection limit (LOD) and quantification limit (LOQ), for each pesticide were calculated. The average recoveries obtained ranged between 70 and 120% at three different fortification levels (25, 200 and 500 microg/kg) with precision, expressed as relative standard deviation (RSD), values lower than 15%. The calculated LOD and LOQ were typically <3.2 and 9.6 microg/kg, respectively. Such limits were much lower than the maximum residue levels (MRLs) established by European legislation. The proposed methodology was applied to the determination of pesticides in real vegetable samples from Almería (Spain).


Subject(s)
Food Contamination/analysis , Pesticides/analysis , Calibration , Gas Chromatography-Mass Spectrometry , Molecular Structure , Pesticides/isolation & purification , Reference Standards , Reproducibility of Results , Sensitivity and Specificity , Vegetables/chemistry
2.
Anal Bioanal Chem ; 382(1): 164-72, 2005 May.
Article in English | MEDLINE | ID: mdl-15900467

ABSTRACT

A new analytical method is proposed to determine more than 40 multiclass pesticides in different kinds of processed (whole, skimmed and powdered) and unprocessed (goat and human) milk samples using solid-phase microextraction (SPME). A comparative study between headspace (HS) and direct immersion (DI) was carried out. The effect of milk dilution and the use of acid to reduce the influence of the matrix in DI-SPME mode were also evaluated. DI of the SPME fiber into previously diluted and acidified milk samples achieved the best sensitivity results. Pesticides were determined using low-pressure gas chromatography-tandem mass spectrometry (LP-GC-MS/MS). Both of the selected techniques have been shown to be effective at reduce fat interference and can determine analytes present at very low concentrations (limits of quantification between 0.02 and 1.00 microg L(-1)). Performance characteristics such as linearity, recovery, precision, and lower limits, together with an estimation of the measurement uncertainty using validation data, are presented for each pesticide. All of the pesticides presented recovery rates of between 81 and 110% and precision values lower than 12% (expressed as the relative standard deviation). The overall uncertainty of the method was estimated at three different concentrations (10, 25 and 50 microg L(-1)) and was lower than 25.5% in all cases. The proposed analytical methodology was applied to the analysis of target pesticides in 35 samples: 15 commercial, 3 human and 17 goat milk samples. The metabolite p,p'-DDE was the compound most frequently found in both the breast and goat milk samples, at concentration levels < 20 microg L(-1). However, pesticide residues were not found in any of the other 15 commercial milk samples (skimmed, powdered and whole milk) analyzed.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Milk/chemistry , Pesticides/analysis , Animals , Goats , Humans , Reference Standards , Reproducibility of Results , Sensitivity and Specificity
3.
Anal Bioanal Chem ; 379(1): 125-30, 2004 May.
Article in English | MEDLINE | ID: mdl-14963623

ABSTRACT

This work describes the optimisation of a method to determinate fifteen phenolic compounds in waters, sediments and biota (green marine algae) by liquid chromatography coupled to mass spectrometry (LC-MS) with atmospheric pressure chemical ionisation (APCI) in the negative mode. The LC separations of the studied compounds and their MS parameters were optimised in order to improve selectivity and sensitivity. Separation was carried out with a C(18) column using methanol and 0.005% acid acetic as mobile phase in gradient mode. The molecular ion was selected for the quantitation in selective ion monitoring (SIM) mode. A solid-phase extraction (SPE) method was applied in order to preconcentrate the target analytes from water samples. However, extraction of the compounds from sediment and biota samples was carried out by liquid-solid extraction with methanol/water after studying the influence of other organic solvents. In addition, a clean-up step by SPE with HLB Oasis cartridges was necessary for sediments and biota. The proposed analytical methodology was validated in the target environmental matrices by the analysis of spiked blank matrix samples. Detection limits were 10-50 ng L(-1) for water, 1-5 microg kg(-1) for sediments and 2.5-5 microg kg(-1) for biota samples. Good recoveries and precision values were obtained for all matrices. This methodology has been successfully applied to the analysis of incurred water, sediment and biota samples from Andalusia (Spain).


Subject(s)
Environmental Monitoring/methods , Phenols/analysis , Water Pollutants, Chemical/analysis , Biodiversity , Chlorophyta/chemistry , Chromatography, Liquid/methods , Geologic Sediments/analysis , Mass Spectrometry/methods , Phenols/chemistry , Reproducibility of Results , Spain , Water/analysis
4.
Talanta ; 60(4): 765-74, 2003 Jul 04.
Article in English | MEDLINE | ID: mdl-18969101

ABSTRACT

Three multivariate calibration methods, partial least squares (PLS-1 and PLS-2) and principal component regression (PCR), were applied for the first time to the simultaneous determination of a mixture of six pesticides in vegetables samples by gas chromatography with mass spectrometric detection (GC-MS). PLS-1 method showed better prediction ability than PLS-2 and PCR methods. The GC-MS chromatograms obtained of vegetable samples spiked with the target pesticides were used to build the calibration matrix. The PLS-1 models were evaluated by predicting the concentrations of independent test samples. Also, the proposed models were successfully applied for the determination of these pesticides in vegetable samples after an extraction step with dichloromethane. By using the first derivative signals in PLS-1 models, simultaneous determination of the compounds was not improved.

SELECTION OF CITATIONS
SEARCH DETAIL
...