Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
J Am Heart Assoc ; 13(9): e032172, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38700022

ABSTRACT

BACKGROUND: The purpose of this study was to investigate a therapeutic approach targeting the inflammatory response and consequent remodeling from ischemic myocardial injury. METHODS AND RESULTS: Coronary thrombus aspirates were collected from patients at the time of ST-segment-elevation myocardial infarction and subjected to array-based proteome analysis. Clinically indistinguishable at myocardial infarction (MI), patients were stratified into vulnerable and resilient on the basis of 1-year left ventricular ejection fraction and death. Network analysis from coronary aspirates revealed prioritization of tumor necrosis factor-α signaling in patients with worse clinical outcomes. Infliximab, a tumor necrosis factor-α inhibitor, was infused intravenously at reperfusion in a porcine MI model to assess whether infliximab-mediated immune modulation impacts post-MI injury. At 3 days after MI (n=7), infliximab infusion increased proregenerative M2 macrophages in the myocardial border zone as quantified by immunofluorescence (24.1%±23.3% in infliximab versus 9.29%±8.7% in sham; P<0.01). Concomitantly, immunoassays of coronary sinus samples quantified lower troponin I levels (41.72±7.34 pg/mL versus 58.11±10.75 pg/mL; P<0.05) and secreted protein analysis revealed upregulation of injury-modifying interleukin-2, -4, -10, -12, and -18 cytokines in the infliximab-treated cohort. At 4 weeks (n=12), infliximab treatment resulted in significant protective influence, improving left ventricular ejection fraction (53.9%±5.4% versus 36.2%±5.3%; P<0.001) and reducing scar size (8.31%±10.9% versus 17.41%±12.5%; P<0.05). CONCLUSIONS: Profiling of coronary thrombus aspirates in patients with ST-segment-elevation MI revealed highest association for tumor necrosis factor-α in injury risk. Infliximab-mediated immune modulation offers an actionable pathway to alter MI-induced inflammatory response, preserving contractility and limiting adverse structural remodeling.


Subject(s)
Disease Models, Animal , Infliximab , Ventricular Remodeling , Infliximab/therapeutic use , Infliximab/pharmacology , Animals , Humans , Male , Middle Aged , Ventricular Remodeling/drug effects , Female , ST Elevation Myocardial Infarction/drug therapy , ST Elevation Myocardial Infarction/immunology , Ventricular Function, Left/drug effects , Swine , Aged , Tumor Necrosis Factor-alpha/metabolism , Stroke Volume/drug effects , Coronary Thrombosis/prevention & control , Coronary Thrombosis/drug therapy , Myocardium/pathology , Myocardium/metabolism , Myocardium/immunology , Troponin I/blood , Troponin I/metabolism , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism
2.
Sci Rep ; 12(1): 7314, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35513538

ABSTRACT

Plasmalemmal ATP sensitive potassium (KATP) channels are recognized metabolic sensors, yet their cellular reach is less well understood. Here, transgenic Kir6.2 null hearts devoid of the KATP channel pore underwent multiomics surveillance and systems interrogation versus wildtype counterparts. Despite maintained organ performance, the knockout proteome deviated beyond a discrete loss of constitutive KATP channel subunits. Multidimensional nano-flow liquid chromatography tandem mass spectrometry resolved 111 differentially expressed proteins and their expanded network neighborhood, dominated by metabolic process engagement. Independent multimodal chemometric gas and liquid chromatography mass spectrometry unveiled differential expression of over one quarter of measured metabolites discriminating the Kir6.2 deficient heart metabolome. Supervised class analogy ranking and unsupervised enrichment analysis prioritized nicotinamide adenine dinucleotide (NAD+), affirmed by extensive overrepresentation of NAD+ associated circuitry. The remodeled metabolome and proteome revealed functional convergence and an integrated signature of disease susceptibility. Deciphered cardiac patterns were traceable in the corresponding plasma metabolome, with tissue concordant plasma changes offering surrogate metabolite markers of myocardial latent vulnerability. Thus, Kir6.2 deficit precipitates multiome reorganization, mapping a comprehensive atlas of the KATP channel dependent landscape.


Subject(s)
NAD , Proteome , Adenosine Triphosphate , Heart , KATP Channels/genetics , KATP Channels/metabolism , NAD/metabolism , Proteome/metabolism
3.
Stem Cells Transl Med ; 10(9): 1320-1328, 2021 09.
Article in English | MEDLINE | ID: mdl-34047493

ABSTRACT

Stem cell paracrine activity is implicated in cardiac repair. Linkage between secretome functionality and therapeutic outcome was here interrogated by systems analytics of biobanked human cardiopoietic cells, a regenerative biologic in advanced clinical trials. Protein chip array identified 155 proteins differentially secreted by cardiopoietic cells with clinical benefit, expanded into a 520 node network, collectively revealing inherent vasculogenic properties along with cardiac and smooth muscle differentiation and development. Next generation RNA sequencing, refined by pathway analysis, pinpointed miR-146 dependent regulation upstream of the decoded secretome. Intracellular and extracellular integration unmasked commonality across cardio-vasculogenic processes. Mirroring the secretome pattern, infarcted hearts benefiting from cardiopoietic cell therapy restored the disease proteome engaging cardiovascular system functions. The cardiopoietic cell secretome thus confers a therapeutic molecular imprint on recipient hearts, with response informed by predictive systems profiling.


Subject(s)
Myocardial Infarction , Proteome , Heart/physiology , Humans , Myocardial Infarction/therapy , Secretome , Stem Cells
4.
NPJ Regen Med ; 5: 5, 2020.
Article in English | MEDLINE | ID: mdl-32194990

ABSTRACT

Cardiopoietic stem cells have reached advanced clinical testing for ischemic heart failure. To profile their molecular influence on recipient hearts, systems proteomics was here applied in a chronic model of infarction randomized with and without human cardiopoietic stem cell treatment. Multidimensional label-free tandem mass spectrometry resolved and quantified 3987 proteins constituting the cardiac proteome. Infarction altered 450 proteins, reduced to 283 by stem cell treatment. Notably, cell therapy non-stochastically reversed a majority of infarction-provoked changes, remediating 85% of disease-affected protein clusters. Pathway and network analysis decoded functional reorganization, distinguished by prioritization of vasculogenesis, cardiac development, organ regeneration, and differentiation. Subproteome restoration nullified adverse ischemic effects, validated by echo-/electro-cardiographic documentation of improved cardiac chamber size, reduced QT prolongation and augmented ejection fraction post-cell therapy. Collectively, cardiopoietic stem cell intervention transitioned infarcted hearts from a cardiomyopathic trajectory towards pre-disease. Systems proteomics thus offers utility to delineate and interpret complex molecular regenerative outcomes.

5.
Stem Cells Transl Med ; 9(1): 74-79, 2020 01.
Article in English | MEDLINE | ID: mdl-31373782

ABSTRACT

Response to stem cell therapy in heart failure is heterogeneous, warranting a better understanding of outcome predictors. This study assessed left ventricular volume, a surrogate of disease severity, on cell therapy benefit. Small to large infarctions were induced in murine hearts to model moderate, advanced, and end-stage ischemic cardiomyopathy. At 1 month postinfarction, cardiomyopathic cohorts with comparable left ventricular enlargement and dysfunction were randomized 1:1 to those that either received sham treatment or epicardial delivery of cardiopoietic stem cells (CP). Progressive dilation and pump failure consistently developed in sham. In comparison, CP treatment produced significant benefit at 1 month post-therapy, albeit with an efficacy impacted by cardiomyopathic stage. Advanced ischemic cardiomyopathy was the most responsive to CP-mediated salvage, exhibiting both structural and functional restitution, with proteome deconvolution substantiating that cell therapy reversed infarction-induced remodeling of functional pathways. Moderate cardiomyopathy was less responsive to CP therapy, improving contractility but without reversing preexistent heart enlargement. In end-stage disease, CP therapy showed the least benefit. This proof-of-concept study thus demonstrates an optimal window, or "Goldilocks principle," of left ventricular enlargement for maximized stem cell-based cardiac repair. Disease severity grading, prior to cell therapy, should be considered to inform regenerative medicine interventions.


Subject(s)
Heart Failure/therapy , Stem Cell Transplantation/methods , Ventricular Remodeling , Animals , Disease Models, Animal , Humans , Mice , Mice, Nude
6.
Sci Rep ; 7(1): 14499, 2017 11 03.
Article in English | MEDLINE | ID: mdl-29101331

ABSTRACT

Growth factors are signaling molecules which orchestrate cell growth, proliferation and differentiation. The majority are secreted proteins, exported through the classical endoplasmic reticulum (ER)/Golgi-dependent pathway, but a few are released by unconventional ER/Golgi-independent means. Human fibroblast growth factor 2 (FGF2) and insulin-like growth factor 1 (IGF1), are canonical prototypes secreted by the unconventional and conventional pathway, respectively. We herein examined whether expression of these two growth factors in the Bombyx mori nucleopolyhedrovirus (BmNPV)-based silkworm expression system with its innate signal peptide, bombyxin, secures structural homogeneity at the signal peptide cleavage site regardless of the native secretory route. Proteomic analysis mapped structural microheterogeneity of signal peptide cleavage at the amino terminus of FGF2, whereas IGF1 displayed homogeneous amino-terminal cleavage with complete removal of the bombyxin signal peptide. A cell proliferation assay revealed potent functional activity of both FGF2 and IGF1, suggesting that FGF2 amino-terminal microheterogeneity does not alter mitogenic activity. These findings demonstrate that the occurrence of amino-terminal structural homogeneity may be associated with the original secretion mechanism of a particular growth factor. Furthermore, our results highlight the bombyxin signal peptide as a reliable secretion sequence applicable to mass production of functionally active secretory proteins in a silkworm-based expression platform.


Subject(s)
Bombyx/metabolism , Fibroblast Growth Factor 2/metabolism , Insulin-Like Growth Factor I/metabolism , Neuropeptides/metabolism , Animals , Animals, Genetically Modified , Bombyx/genetics , Cell Proliferation/drug effects , Cell Proliferation/physiology , Fibroblast Growth Factor 2/administration & dosage , Fibroblast Growth Factor 2/genetics , Humans , Insulin-Like Growth Factor I/administration & dosage , Insulin-Like Growth Factor I/genetics , Mice , NIH 3T3 Cells , Neuropeptides/genetics , Proteome , Proteomics , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
7.
Circulation ; 132(9): 852-72, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26195497

ABSTRACT

The year 2014 marked the 20th anniversary of the coining of the term proteomics. The purpose of this scientific statement is to summarize advances over this period that have catalyzed our capacity to address the experimental, translational, and clinical implications of proteomics as applied to cardiovascular health and disease and to evaluate the current status of the field. Key successes that have energized the field are delineated; opportunities for proteomics to drive basic science research, facilitate clinical translation, and establish diagnostic and therapeutic healthcare algorithms are discussed; and challenges that remain to be solved before proteomic technologies can be readily translated from scientific discoveries to meaningful advances in cardiovascular care are addressed. Proteomics is the result of disruptive technologies, namely, mass spectrometry and database searching, which drove protein analysis from 1 protein at a time to protein mixture analyses that enable large-scale analysis of proteins and facilitate paradigm shifts in biological concepts that address important clinical questions. Over the past 20 years, the field of proteomics has matured, yet it is still developing rapidly. The scope of this statement will extend beyond the reaches of a typical review article and offer guidance on the use of next-generation proteomics for future scientific discovery in the basic research laboratory and clinical settings.


Subject(s)
American Heart Association , Cardiovascular Diseases/genetics , Health Status , Proteomics/trends , Cardiovascular Diseases/diagnosis , Cardiovascular System , Humans , Proteomics/methods , United States
8.
J Am Heart Assoc ; 4(5)2015 May 11.
Article in English | MEDLINE | ID: mdl-25964205

ABSTRACT

BACKGROUND: Cardiac resynchronization therapy using bi-ventricular pacing is proven effective in the management of heart failure (HF) with a wide QRS-complex. In the absence of QRS prolongation, however, device-based resynchronization is reported unsuitable. As an alternative, the present study tests a regenerative cell-based approach in the setting of narrow QRS-complex HF. METHODS AND RESULTS: Progressive cardiac dyssynchrony was provoked in a chronic transgenic model of stress-triggered dilated cardiomyopathy. In contrast to rampant end-stage disease afflicting untreated cohorts, stem cell intervention early in disease, characterized by mechanical dyssynchrony and a narrow QRS-complex, aborted progressive dyssynchronous HF and prevented QRS widening. Stem cell-treated hearts acquired coordinated ventricular contraction and relaxation supporting systolic and diastolic performance. Rescue of contractile dynamics was underpinned by a halted left ventricular dilatation, limited hypertrophy, and reduced fibrosis. Reverse remodeling reflected a restored cardiomyopathic proteome, enforced at systems level through correction of the pathological molecular landscape and nullified adverse cardiac outcomes. Cell therapy of a dyssynchrony-prone cardiomyopathic cohort translated prospectively into improved exercise capacity and prolonged survivorship. CONCLUSIONS: In narrow QRS HF, a regenerative approach demonstrated functional and structural benefit, introducing the prospect of device-autonomous resynchronization therapy for refractory disease.


Subject(s)
Cardiomyopathy, Dilated/therapy , Cell- and Tissue-Based Therapy/methods , Electrocardiography , Heart Failure/prevention & control , Regeneration/physiology , Stem Cell Transplantation/methods , Stem Cells/cytology , Animals , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/therapy , Brugada Syndrome , Cardiac Conduction System Disease , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/physiopathology , Disease Models, Animal , Fibrosis/pathology , Heart Conduction System/abnormalities , Heart Conduction System/physiopathology , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Hypertrophy/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Stem Cells/physiology , Treatment Outcome , Ventricular Remodeling
10.
J Am Heart Assoc ; 2(6): e000410, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24308936

ABSTRACT

BACKGROUND: Contractile discordance exacerbates cardiac dysfunction, aggravating heart failure outcome. Dissecting the genesis of mechanical dyssynchrony would enable an early diagnosis before advanced disease. METHODS AND RESULTS: High-resolution speckle-tracking echocardiography was applied in a knockout murine surrogate of adult-onset human cardiomyopathy caused by mutations in cardioprotective ATP-sensitive K(+) (K(ATP)) channels. Preceding the established criteria of cardiac dyssynchrony, multiparametric speckle-based strain resolved nascent erosion of dysfunctional regions within cardiomyopathic ventricles of the K(ATP) channel-null mutant exposed to hemodynamic stress. Not observed in wild-type counterparts, intraventricular disparity in wall motion, validated by the degree, direction, and delay of myocardial speckle patterns, unmasked the disease substrate from asymptomatic to overt heart failure. Mechanical dyssynchrony preceded widening of the QRS complex and exercise intolerance and progressed into global myocardial discoordination and decompensated cardiac pump function, precipitating a low output syndrome. CONCLUSIONS: The present study, with the use of high-resolution imaging, prospectively resolved the origin and extent of intraventricular motion disparity in a K(ATP) channel-knockout model of dilated cardiomyopathy. Mechanical dyssynchrony established as an early marker of cardiomyopathic disease offers novel insight into the pathodynamics of dyssynchronous heart failure.


Subject(s)
Cardiomyopathy, Dilated/complications , Heart Ventricles/metabolism , KATP Channels/deficiency , Myocardial Contraction , Potassium Channels, Inwardly Rectifying/deficiency , Ventricular Dysfunction, Left/etiology , Ventricular Function, Left , Animals , Cardiac Output, Low/etiology , Cardiac Output, Low/metabolism , Cardiac Output, Low/physiopathology , Cardiomyopathy, Dilated/diagnostic imaging , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/physiopathology , Disease Models, Animal , Disease Progression , Echocardiography, Doppler , Heart Failure/etiology , Heart Failure/metabolism , Heart Failure/physiopathology , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Hemodynamics , KATP Channels/genetics , Male , Mice , Mice, Knockout , Potassium Channels, Inwardly Rectifying/genetics , Time Factors , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/physiopathology
11.
Croat Med J ; 54(4): 319-29, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23986272

ABSTRACT

Development of innovative high throughput technologies has enabled a variety of molecular landscapes to be interrogated with an unprecedented degree of detail. Emergence of next generation nucleotide sequencing methods, advanced proteomic techniques, and metabolic profiling approaches continue to produce a wealth of biological data that captures molecular frameworks underlying phenotype. The advent of these novel technologies has significant translational applications, as investigators can now explore molecular underpinnings of developmental states with a high degree of resolution. Application of these leading-edge techniques to patient samples has been successfully used to unmask nuanced molecular details of disease vs healthy tissue, which may provide novel targets for palliative intervention. To enhance such approaches, concomitant development of algorithms to reprogram differentiated cells in order to recapitulate pluripotent capacity offers a distinct advantage to advancing diagnostic methodology. Bioinformatic deconvolution of several "-omic" layers extracted from reprogrammed patient cells, could, in principle, provide a means by which the evolution of individual pathology can be developmentally monitored. Significant logistic challenges face current implementation of this novel paradigm of patient treatment and care, however, several of these limitations have been successfully addressed through continuous development of cutting edge in silico archiving and processing methods. Comprehensive elucidation of genomic, transcriptomic, proteomic, and metabolomic networks that define normal and pathological states, in combination with reprogrammed patient cells are thus poised to become high value resources in modern diagnosis and prognosis of patient disease.


Subject(s)
Gene Expression Profiling/methods , Molecular Diagnostic Techniques , Point-of-Care Systems , Proteomics/methods , Stem Cell Transplantation , Delivery of Health Care/methods , Humans
12.
Cell Cycle ; 12(15): 2355-65, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23839047

ABSTRACT

Nuclear reprogramming resets differentiated tissue to generate induced pluripotent stem (iPS) cells. While genomic attributes underlying reacquisition of the embryonic-like state have been delineated, less is known regarding the metabolic dynamics underscoring induction of pluripotency. Metabolomic profiling of fibroblasts vs. iPS cells demonstrated nuclear reprogramming-associated induction of glycolysis, realized through augmented utilization of glucose and accumulation of lactate. Real-time assessment unmasked downregulated mitochondrial reserve capacity and ATP turnover correlating with pluripotent induction. Reduction in oxygen consumption and acceleration of extracellular acidification rates represent high-throughput markers of the transition from oxidative to glycolytic metabolism, characterizing stemness acquisition. The bioenergetic transition was supported by proteome remodeling, whereby 441 proteins were altered between fibroblasts and derived iPS cells. Systems analysis revealed overrepresented canonical pathways and interactome-associated biological processes predicting differential metabolic behavior in response to reprogramming stimuli, including upregulation of glycolysis, purine, arginine, proline, ribonucleoside and ribonucleotide metabolism, and biopolymer and macromolecular catabolism, with concomitant downregulation of oxidative phosphorylation, phosphate metabolism regulation, and precursor biosynthesis processes, prioritizing the impact of energy metabolism within the hierarchy of nuclear reprogramming. Thus, metabolome and metaboproteome remodeling is integral for induction of pluripotency, expanding on the genetic and epigenetic requirements for cell fate manipulation.


Subject(s)
Cellular Reprogramming , Metabolome , Proteome/metabolism , Animals , Cells, Cultured , Fibroblasts/metabolism , Fibroblasts/ultrastructure , Gene Ontology , Gene Regulatory Networks , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/ultrastructure , Mice , Mitochondria/metabolism , Mitochondria/ultrastructure , Protein Interaction Maps
15.
Cell Metab ; 14(2): 264-71, 2011 Aug 03.
Article in English | MEDLINE | ID: mdl-21803296

ABSTRACT

The bioenergetics of somatic dedifferentiation into induced pluripotent stem cells remains largely unknown. Here, stemness factor-mediated nuclear reprogramming reverted mitochondrial networks into cristae-poor structures. Metabolomic footprinting and fingerprinting distinguished derived pluripotent progeny from parental fibroblasts according to elevated glucose utilization and production of glycolytic end products. Temporal sampling demonstrated glycolytic gene potentiation prior to induction of pluripotent markers. Functional metamorphosis of somatic oxidative phosphorylation into acquired pluripotent glycolytic metabolism conformed to an embryonic-like archetype. Stimulation of glycolysis promoted, while blockade of glycolytic enzyme activity blunted, reprogramming efficiency. Metaboproteomics resolved upregulated glycolytic enzymes and downregulated electron transport chain complex I subunits underlying cell fate determination. Thus, the energetic infrastructure of somatic cells transitions into a required glycolytic metabotype to fuel induction of pluripotency.


Subject(s)
Cellular Reprogramming , Energy Metabolism , Glycolysis/physiology , Pluripotent Stem Cells/metabolism , Animals , Cell Differentiation/genetics , Cell Line , Electron Transport , Gene Expression Regulation, Developmental , Glucose/metabolism , Metabolomics , Mice , Mitochondria/metabolism , Oxidative Phosphorylation , Oxygen Consumption
16.
Cardiovasc Res ; 90(2): 258-66, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21321057

ABSTRACT

Systems biology provides an integrative platform by which to account for the biological complexity related to cardiac health and disease. In this way, consequences of ATP-sensitive K(+) (K(ATP)) channel deficiency for heart failure prediction, diagnosis, and therapy were resolved recently at a proteomic level. Under stress-free conditions, knockout of the Kir6.2 K(ATP) channel pore induced metabolic proteome remodelling, revealing overrepresentation of markers of cardiovascular disease. Imposed stress precipitated structural and functional defects in Kir6.2-knockout hearts, decreasing survival and validating prediction of disease susceptibility. In the setting of hypertension, a leading risk for heart failure development, proteomic analysis diagnosed the metabolism-centric impact of K(ATP) channel deficiency in disease. Bioinformatic interrogation of K(ATP) channel-dependent proteome prioritized heart-specific adverse effects, exposing cardiomyopathic traits of aggravated contractility, fibrosis, and ventricular hypertrophy. In dilated cardiomyopathy induced by Kir6.2-knockout pressure overload, proteomic remodelling was exacerbated, underlying a multifaceted molecular pathology that indicates the necessity for a broad-based strategy to achieve repair. Embryonic stem cell intervention in cardiomyopathic K(ATP) channel knockout hearts elicited a distinct proteome signature that forecast amelioration of adverse cardiac outcomes. Functional/structural measurements validated improved contractile performance, reduced ventricular size, and decreased cardiac damage in the treated cohort, while systems assessment unmasked cardiovascular development as a prioritized biological function in stem cell-reconstructed hearts. Thus, proteomic deconvolution of K(ATP) channel-deficient hearts provides definitive evidence for the channel's homeostatic contribution to the cardiac metaboproteome and establishes the utility of systems-oriented approaches to predict disease susceptibility, diagnose consequences of heart failure progression, and monitor therapy outcome.


Subject(s)
Heart Failure , Metabolomics , Potassium Channels/genetics , Potassium Channels/metabolism , Proteomics , Animals , Heart Failure/diagnosis , Heart Failure/metabolism , Heart Failure/therapy , Humans , Predictive Value of Tests , Systems Biology
17.
Stem Cells ; 28(8): 1355-67, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20572010

ABSTRACT

Transplantation of pluripotent stem cells has proven beneficial in heart failure, yet the proteomic landscape underlying repair remains largely uncharacterized. In a genetic model of dilated cardiomyopathy elicited by pressure overload in the KCNJ11 (potassium inwardly rectifying channel, subfamily J, member 11) null mutant, proteome-wide profiles were here resolved by means of a systems approach prior to and following disease manifestation in the absence or presence of embryonic stem cell treatment. Comparative two-dimensional gel electrophoresis revealed a unique cardiomyopathic proteome in the absence of therapy, remodeled in response to stem cell treatment. Specifically, linear ion trap quadrupole-Orbitrap mass spectrometry determined the identities of 93 and 109 differentially expressed proteins from treated and untreated cardiomyopathic hearts, respectively. Mapped protein-protein relationships and corresponding neighborhoods incorporated the stem cell-dependent subproteome into a nonstochastic network with divergent composition from the stem cell-independent counterpart. Stem cell intervention produced a distinct proteome signature across a spectrum of biological processes ranging from energetic metabolism, oxidoreductases, and stress-related chaperones to processes supporting protein synthesis/degradation, signaling, and transport regulation, cell structure and scaffolding. In the absence of treatment, bioinformatic interrogation of the disease-only proteome network prioritized adverse cardiac outcomes, ablated or ameliorated following stem cell transplantation. Functional and structural measurements validated improved myocardial contractile performance, reduced ventricular size and decreased cardiac damage in the treated cohort. Unbiased systems assessment unmasked "cardiovascular development" as a prioritized biological function in stem cell-reconstructed cardiomyopathic hearts. Thus, embryonic stem cell treatment transformed the cardiomyopathic proteome to demote disease-associated adverse effects and sustain a procardiogenic developmental response, supplying a regenerative substrate for heart failure repair.


Subject(s)
Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/therapy , Embryonic Stem Cells/physiology , KATP Channels/genetics , Animals , Cardiomyopathy, Dilated/genetics , Cell Line , Electrophoresis, Gel, Two-Dimensional , Embryonic Stem Cells/cytology , Female , KATP Channels/deficiency , Male , Mice , Stem Cell Transplantation , Tandem Mass Spectrometry
18.
J Mol Cell Cardiol ; 48(4): 725-34, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20045004

ABSTRACT

Decoding of the bioenergetic signature underlying embryonic stem cell cardiac differentiation has revealed a mandatory transformation of the metabolic infrastructure with prominent mitochondrial network expansion and a distinctive switch from glycolysis to oxidative phosphorylation. Here, we demonstrate that despite reduction in total glycolytic capacity, stem cell cardiogenesis engages a significant transcriptome, proteome, as well as enzymatic and topological rearrangement in the proximal, medial, and distal modules of the glycolytic pathway. Glycolytic restructuring was manifested by a shift in hexokinase (Hk) isoforms from Hk-2 to cardiac Hk-1, with intracellular and intermyofibrillar localization mapping mitochondrial network arrangement. Moreover, upregulation of cardiac-specific enolase 3, phosphofructokinase, and phosphoglucomutase and a marked increase in glyceraldehyde 3-phosphate dehydrogenase (GAPDH) phosphotransfer activity, along with apparent post-translational modifications of GAPDH and phosphoglycerate kinase, were all distinctive for derived cardiomyocytes compared to the embryonic stem cell source. Lactate dehydrogenase (LDH) isoforms evolved towards LDH-2 and LDH-3, containing higher proportions of heart-specific subunits, and pyruvate dehydrogenase isoforms rearranged between E1alpha and E1beta, transitions favorable for substrate oxidation in mitochondria. Concomitantly, transcript levels of fetal pyruvate kinase isoform M2, aldolase 3, and transketolase, which shunt the glycolytic with pentose phosphate pathways, were reduced. Collectively, changes in glycolytic pathway modules indicate active redeployment, which would facilitate connectivity of the expanding mitochondrial network with ATP utilization sites. Thus, the delineated developmental dynamics of the glycolytic phosphotransfer network is integral to the remodeling of cellular energetic infrastructure underlying stem cell cardiogenesis.


Subject(s)
Embryonic Stem Cells/cytology , Animals , Cell Differentiation , Electrophoresis, Gel, Two-Dimensional , Gene Expression Profiling , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Glycolysis , Image Processing, Computer-Assisted , L-Lactate Dehydrogenase/metabolism , Metabolomics , Mice , Pentose Phosphate Pathway , Phosphoglycerate Kinase/metabolism , Protein Isoforms , Protein Processing, Post-Translational
19.
J Proteome Res ; 8(10): 4823-34, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19673485

ABSTRACT

Forecasting disease susceptibility requires detection of maladaptive signatures prior to onset of overt symptoms. A case-in-point are cardiac ATP-sensitive K+ (K(ATP)) channelopathies, for which the substrate underlying disease vulnerability remains to be identified. Resolving molecular pathobiology, even for single genetic defects, mandates a systems platform to reliably diagnose disease predisposition. High-throughput proteomic analysis was here integrated with network biology to decode consequences of Kir6.2 K(ATP) channel pore deletion. Differential two-dimensional gel electrophoresis reproducibly resolved >800 protein species from hearts of asymptomatic wild-type and Kir6.2-knockout counterparts. K(ATP) channel ablation remodeled the cardiac proteome, significantly altering 71 protein spots, from which 102 unique identities were assigned following hybrid linear ion trap quadrupole-Orbitrap tandem mass spectrometry. Ontological annotation stratified the K(ATP) channel-dependent protein cohort into a predominant bioenergetic module (63 resolved identities), with additional focused sets representing signaling molecules (6), oxidoreductases (8), chaperones (6), and proteins involved in catabolism (6), cytostructure (8), and transcription and translation (5). Protein interaction mapping, in conjunction with expression level changes, localized a K(ATP) channel-associated subproteome within a nonstochastic scale-free network. Global assessment of the K(ATP) channel deficient environment verified the primary impact on metabolic pathways and revealed overrepresentation of markers associated with cardiovascular disease. Experimental imposition of graded stress precipitated exaggerated structural and functional myocardial defects in the Kir6.2-knockout, decreasing survivorship and validating the forecast of disease susceptibility. Proteomic cartography thus provides an integral view of molecular remodeling in the heart induced by K(ATP) channel deletion, establishing a systems approach that predicts outcome at a presymptomatic stage.


Subject(s)
Disease Susceptibility/metabolism , Heart Diseases/metabolism , Heart Ventricles/metabolism , KATP Channels , Proteome/metabolism , Animals , Electrophoresis, Gel, Two-Dimensional , Gene Regulatory Networks , KATP Channels/genetics , KATP Channels/metabolism , Kaplan-Meier Estimate , Male , Metabolic Networks and Pathways , Mice , Mice, Knockout , Reproducibility of Results , Signal Transduction
20.
Proteomics ; 9(5): 1314-25, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19253285

ABSTRACT

KCNJ11 null mutants, lacking Kir6.2 ATP-sensitive K(+) (K(ATP)) channels, exhibit a marked susceptibility towards hypertension (HTN)-induced heart failure. To gain insight into the molecular alterations induced by knockout of this metabolic sensor under hemodynamic stress, wild-type (WT) and Kir6.2 knockout (Kir6.2-KO) cardiac proteomes were profiled by comparative 2-DE and Orbitrap MS. Despite equivalent systemic HTN produced by chronic hyperaldosteronism, 114 unique proteins were altered in Kir6.2-KO compared to WT hearts. Bioinformatic analysis linked the primary biological function of the K(ATP) channel-dependent protein cohort to energetic metabolism (64% of proteins), followed by signaling infrastructure (36%) including oxidoreductases, stress-related chaperones, processes supporting protein degradation, transcription and translation, and cytostructure. Mapped protein-protein relationships authenticated the primary impact on metabolic pathways, delineating the K(ATP) channel-dependent subproteome within a nonstochastic network. Iterative systems interrogation of the proteomic web prioritized heart-specific adverse effects, i.e., "Cardiac Damage", "Cardiac Enlargement", and "Cardiac Fibrosis", exposing a predisposition for the development of cardiomyopathic traits in the hypertensive Kir6.2-KO. Validating this maladaptive forecast, phenotyping documented an aggravated myocardial contractile performance, a massive interstitial fibrosis and an exaggerated left ventricular size, all prognostic indices of poor outcome. Thus, Kir6.2 ablation engenders unfavorable proteomic remodeling in hypertensive hearts, providing a composite molecular substrate for pathologic stress-associated cardiovascular disease.


Subject(s)
Cardiomyopathies/genetics , Hypertension/complications , KATP Channels/genetics , KATP Channels/metabolism , Proteome/analysis , Animals , Disease Models, Animal , Genetic Predisposition to Disease , Heart/physiopathology , Heart Failure/complications , Heart Failure/etiology , Hypertension/genetics , Hypertension/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Interaction Mapping , Proteome/genetics , Proteome/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...