Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(3): e0172966, 2017.
Article in English | MEDLINE | ID: mdl-28306751

ABSTRACT

Venom based research is exploited to find novel candidates for the development of innovative pharmacological tools, drug candidates and new ingredients for cosmetic and agrochemical industries. Moreover, venomics, as a well-established approach in systems biology, helps to elucidate the genetic mechanisms of the production of such a great molecular biodiversity. Today the advances made in the proteomics, transcriptomics and bioinformatics fields, favor venomics, allowing the in depth study of complex matrices and the elucidation even of minor compounds present in minute biological samples. The present study illustrates a rapid and efficient method developed for the elucidation of venom composition based on NextGen mRNA sequencing of venom glands and LC-MS/MS venom proteome profiling. The analysis of the comprehensive data obtained was focused on cysteine rich peptide toxins from four spider species originating from phylogenetically distant families for comparison purposes. The studied species were Heteropoda davidbowie (Sparassidae), Poecilotheria formosa (Theraphosidae), Viridasius fasciatus (Viridasiidae) and Latrodectus mactans (Theridiidae). This led to a high resolution profiling of 284 characterized cysteine rich peptides, 111 of which belong to the Inhibitor Cysteine Knot (ICK) structural motif. The analysis of H. davidbowie venom revealed a high richness in term of venom diversity: 95 peptide sequences were identified; out of these, 32 peptides presented the ICK structural motif and could be classified in six distinct families. The profiling of P. formosa venom highlighted the presence of 126 peptide sequences, with 52 ICK toxins belonging to three structural distinct families. V. fasciatus venom was shown to contain 49 peptide sequences, out of which 22 presented the ICK structural motif and were attributed to five families. The venom of L. mactans, until now studied for its large neurotoxins (Latrotoxins), revealed the presence of 14 cysteine rich peptides, out of which five were ICK toxins belonging to the CSTX superfamily. This in depth profiling of distinct ICK peptide families identified across the four spider species highlighted the high conservation of these neurotoxins among spider families.


Subject(s)
Peptides/metabolism , Spider Venoms/metabolism , Transcriptome , Chromatography, Liquid , Tandem Mass Spectrometry
2.
Article in English | MEDLINE | ID: mdl-28137809

ABSTRACT

Synthetic peptides derived from the heptad repeat (HR) of fusion (F) proteins can be used as dominant negative inhibitors to inhibit the fusion mechanism of class I viral F proteins. Here, we have performed a stapled-peptide scan across the HR2 domain of the respiratory syncytial virus (RSV) F protein with the aim to identify a minimal domain capable of disrupting the formation of the postfusion six-helix bundle required for viral cell entry. Constraining the peptides with a single staple was not sufficient to inhibit RSV infection. However, the insertion of double staples led to the identification of novel short stapled peptides that display nanomolar potency in HEp-2 cells and are exceptionally robust to proteolytic degradation. By replacing each amino acid of the peptides by an alanine, we found that the substitution of residues 506 to 509, located in a patch of polar contacts between HR2 and HR1, severely affected inhibition. Finally, we show that intranasal delivery of the most potent peptide to BALB/c mice significantly decreased RSV infection in upper and lower respiratory tracts. The discovery of this minimal HR2 sequence as a means for inhibition of RSV infection provides the basis for further medicinal chemistry efforts toward developing RSV fusion antivirals.


Subject(s)
Antiviral Agents/pharmacology , Peptides/pharmacology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus, Human/drug effects , Viral Fusion Proteins/chemistry , Virus Internalization/drug effects , Administration, Intranasal , Amino Acid Sequence , Amino Acid Substitution , Animals , Antiviral Agents/chemical synthesis , Binding Sites , Female , HeLa Cells , Humans , Mice , Mice, Inbred BALB C , Peptides/chemical synthesis , Protein Binding , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , Protein Stability , Proteolysis , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/chemistry , Respiratory Syncytial Virus, Human/growth & development , Sequence Alignment , Sequence Homology, Amino Acid , Virus Replication/drug effects
3.
Mol Biosyst ; 12(12): 3530-3543, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27787525

ABSTRACT

The term "venomics" was coined to describe the global study of venom and venom glands, targeting comprehensive characterization of the whole toxin profile of a venomous animal by means of proteomics, transcriptomics, genomics and bioinformatics studies. This integrative approach is supported by the rapid evolution of protein, RNA and DNA sequencing techniques, as well as databases, knowledge-bases and biocomputing algorithms. The aim of this review is to illustrate advances in the field of venomics during the last decade, addressing each step of the procedure, from sample collection to data treatment. A special focus is made on new perspectives for a better understanding of the venomous function and for fostering the discovery of new venom-derived drug candidates.


Subject(s)
Genomics , Proteomics , Venoms/genetics , Venoms/metabolism , Animals , Computational Biology/methods , Genome , Genomics/methods , High-Throughput Nucleotide Sequencing , Proteomics/methods , Specimen Handling , Transcriptome , Venoms/isolation & purification , Venoms/therapeutic use
4.
Electrophoresis ; 37(22): 2913-2921, 2016 11.
Article in English | MEDLINE | ID: mdl-27570211

ABSTRACT

3-(2-furoyl)quinoline-2-carboxaldehyde (FQ) is a sensitive fluorogenic dye, used for derivatization of proteins for SDS-CGE with LIF detection (SDS-CGE-LIF) at silver staining sensitivity (ng/mL). FQ labels proteins at primary amines, found at lysines and N-termini, which vary in number and accessibility for different proteins. This work investigates the accuracy of estimation of protein concentration with SDS-CGE-LIF in real biological samples, where a different protein must be used as a standard. Sixteen purified proteins varying in molecular weight, structure, and sequence were labeled with FQ at constant mass concentration applying a commonly used procedure for SDS-CGE-LIF. The fluorescence of these proteins was measured using a spectrofluorometer and found to vary with a RSD of 36%. This compares favorably with other less sensitive methods for estimation of protein concentration such as SDS-CGE-UV and SDS-PAGE-Coomassie and is vastly superior to the equivalently sensitive silver stain. Investigation into the number of labels bound with UHPLC-ESI-QTOF-MS revealed large variations in the labeling efficiency (percentage of labels to the number of labeling sites given by the sequence) for different proteins (from 3 to 30%). This explains the observation that fluorescence per mole of protein was not proportional to the number of lysines in the sequence.


Subject(s)
Electrophoresis, Capillary/methods , Fluorescent Dyes/chemistry , Furans/chemistry , Proteins/analysis , Quinolines/chemistry , Sodium Dodecyl Sulfate/chemistry , Electrophoresis, Polyacrylamide Gel/methods , Linear Models , Proteins/chemistry , Reproducibility of Results , Sensitivity and Specificity
5.
Appl Microbiol Biotechnol ; 100(4): 1753-1764, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26490551

ABSTRACT

Certain α/ß hydrolases have the ability to hydrolyze synthetic polyesters. While their partial hydrolysis has a potential for surface functionalization, complete hydrolysis allows recycling of valuable building blocks. Although knowledge about biodegradation of these materials is important regarding their fate in the environment, it is currently limited to aerobic organisms. A lipase from the anaerobic groundwater organism Pelosinus fermentans DSM 17108(PfL1) was cloned and expressed in Escherichia coli BL21-Gold (DE3) and purified from the cell extract. Biochemical characterization with small substrates showed thermoalkalophilic properties (Topt=50 °C, pHopt=7.5) and higher activity towards para-nitrophenyl octanoate (12.7 U mg(-1)) compared to longer and shorter chain lengths (C14 0.7 U mg(-1) and C2 4.3 U mg(-1), respectively). Crystallization and determination of the 3-D structure displayed the presence of a lid structure and a zinc ion surrounded by an extra domain. These properties classify the enzyme into the I.5 lipase family. PfL1 is able to hydrolyze poly(1,4-butylene adipate-co-terephthalate) (PBAT) polymeric substrates. The hydrolysis of PBAT showed the release of small building blocks as detected by liquid chromatography mass spectrometry (LC-MS). Protein dynamics seem to be involved with lid opening for the hydrolysis of PBAT by PfL1.


Subject(s)
Firmicutes/enzymology , Firmicutes/isolation & purification , Lipase/isolation & purification , Lipase/metabolism , Polyesters/metabolism , Amino Acid Sequence , Anaerobiosis , Cloning, Molecular , Crystallography, X-Ray , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Groundwater/microbiology , Hydrogen-Ion Concentration , Hydrolysis , Lipase/chemistry , Lipase/genetics , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Substrate Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...