Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 279: 111766, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33310244

ABSTRACT

Algal blooms and the presence of cyanotoxins in surface water restrict the public from accessing lakes and beaches for drinking and recreational activities. An effort was taken in this on-site study to improve the surface water quality of a eutrophic lake, which has been under a swimming advisory for many years. A floating filtration unit with non-woven geotextiles as a sole filter media was tested for removing algae, nutrients, and suspended solids from overlying water under different lake conditions. Three non-woven geotextiles of different pore sizes were examined in different combinations and lake water quality was monitored for different physico-chemical, biological parameters. A YSI-EXO2 multiparameter probe was used for continuous online water quality monitoring during filtration. Depending on the initial water quality, excellent removal efficiency was observed as follows: 85-98% turbidity, 98-100% total suspended solids (TSS), 57-88% total phosphorus (TP), 33-66% chemical oxygen demand (COD) and 80-96% chlorophyll a (Chl. a.). The filtered lake water quality satisfied the norm set for oligotrophic lakes for TP and Chl. a. Results from this on-site study are very promising, showing the potential applicability of geotextile filtration as an ecologically attractive technique to improve the surface water quality of small aquatic bodies.


Subject(s)
Lakes , Water Quality , China , Chlorophyll/analysis , Chlorophyll A , Environmental Monitoring , Eutrophication , Nitrogen/analysis , Phosphorus/analysis
2.
Environ Sci Pollut Res Int ; 26(25): 25573-25582, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31267396

ABSTRACT

This paper presents the treatment of a nitrite-limited wastewater by partial nitrification/anammox process under different dissolved oxygen (DO) concentrations of < 1.2 mg/L, < 0.5 mg/L, and 0 mg/L, and at temperatures of 35 to 27 °C in a pilot-scale single-stage hybrid bioreactor (BioCAST). The effect of operational parameters on microbial community structure and composition has also been investigated during the 1-year experimental period. Ammonium removal efficiencies of 73 ± 19% at 35-32 °C and 87 ± 9% at 29-27 °C were obtained from a synthetic nitrite-limited wastewater with ammonium concentration of 350-500 mg/L (175-250 g m-3 d-1). The adaptation of bacteria to a lower temperature (27 °C) and lower free ammonia concentrations at 27 °C was showed to be key factors leading to the optimal nitrite production by aerobic ammonium-oxidizing bacteria (AOB). No nitrite accumulation was observed due to the effective distribution and transfer of nitrite produced by the AOB in the aerobic zone to the microaerophilic/anoxic zones. The fast enrichment of Candidatus species in the suspended biomass in the anoxic zone at temperatures of 35-30 °C and in the attached biofilm in the microaerophilic zone (DO < 0.5 mg/L) at 29-27 °C suggests that the growth media (e.g., suspended biomass vs attached biofilm) had a minor effect on the diversity of microbial community in this bioreactor. This study supports the effective treatment of nitrite-limited wastewater with ammonium concentrations of < 500 mg/L by partial nitrification/anammox process at 35-27 °C in a single-stage hybrid bioreactor by adjusting the DO concentration to < 0.5 mg/L and by providing longer retention times for aerobic (AOB) and anammox bacteria in the biofilm, which resulted in the long-term suppression of nitrite-oxidizing bacteria (NOB).


Subject(s)
Ammonia/chemistry , Ammonium Compounds/chemistry , Bioreactors/microbiology , Nitrites/chemistry , Wastewater/microbiology , Bacteria/growth & development , Biofilms , Biomass , Nitrification , Temperature , Wastewater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...