Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 25(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39126018

ABSTRACT

Cassava starch solid biopolymer electrolyte (SBPE) films were prepared by a thermochemical method with different concentrations of lithium triflate (LiTFT) as a dopant salt. The process began with dispersing cassava starch in water, followed by heating to facilitate gelatinization; subsequently, plasticizers and LiTFT were added at differing concentrations. The infrared spectroscopy analysis (FTIR-ATR) showed variations in the wavenumber of some characteristic bands of starch, thus evidencing the interaction between the LiTFT salt and biopolymeric matrix. The short-range crystallinity index, determined by the ratio of COH to COC bands, exhibited the highest crystallinity in the salt-free SBPEs and the lowest in the SBPEs with a concentration ratio (Xm) of 0.17. The thermogravimetric analysis demonstrated that the salt addition increased the dehydration process temperature by 5 °C. Additionally, the thermal decomposition processes were shown at lower temperatures after the addition of the LiTFT salt into the SBPEs. The differential scanning calorimetry showed that the addition of the salt affected the endothermic process related to the degradation of the packing of the starch molecules, which occurred at 70 °C in the salt-free SBPEs and at lower temperatures (2 or 3 °C less) in the films that contained the LiTFT salt at different concentrations. The cyclic voltammetry analysis of the SBPE films identified the redox processes of the glucose units in all the samples, with observed differences in peak potentials (Ep) and peak currents (Ip) across various salt concentrations. Electrochemical impedance spectroscopy was used to establish the equivalent circuit model Rf-(Cdl/(Rct-(CPE/Rre))) and determine the electrochemical parameters, revealing a higher conduction value of 2.72 × 10-3 S cm-1 for the SBPEs with Xm = 17 and a lower conduction of 5.80 × 10-4 S cm-1 in the salt-free SBPEs. It was concluded that the concentration of LiTFT salt in the cassava starch SBPE films influences their morphology and slightly reduces their thermal stability. Furthermore, the electrochemical behavior is affected in terms of variations in the redox potentials of the glucose units of the biopolymer and in their ionic conductivity.


Subject(s)
Electric Conductivity , Electrolytes , Manihot , Starch , Starch/chemistry , Manihot/chemistry , Electrolytes/chemistry , Thermogravimetry , Biopolymers/chemistry , Mesylates/chemistry , Spectroscopy, Fourier Transform Infrared , Temperature , Calorimetry, Differential Scanning
2.
Gels ; 10(7)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39057457

ABSTRACT

Fertilizers with enhanced efficiency or high-efficiency fertilizers increase the nutrient availability, minimize losses, and reduce costs, thereby increasing crop yields and food production while mitigating environmental impacts. This research evaluates the synthesis of biodegradable hydrogels from cassava starch and citric acid for agrochemical applications. Hydrogels were synthesized using water as the solvent and applied for the controlled release of macronutrients (N and K). Four concentrations of nutrient-containing salts were tested (0.5 to 10.0% w/w). Materials were analyzed using ATR-FTIR spectroscopy and swelling studies. The presence of nutrients reduced both the crosslinking efficacy and the water absorption capacity, with the latter dropping from 183.4 ± 0.6% to 117.9 ± 3.7% and 157.4 ± 25.0% for hydrogels loaded with NH4Cl and KCl, respectively. The cumulative release of K and N from the hydrogel was monitored for 144 h and examined using kinetics models, revealing that the releases follow Fickian's diffusion and anomalous diffusion, respectively. Additionally, the material was formed using cassava with peel previously milled to reduce the production costs, and its potential for nutrient-controlled delivery was evaluated, with the finding that this hydrogel decreases the release rate of nitrogen. The results suggest that these biomaterials may have promising applications in the agrochemical industry in the making of high-efficiency fertilizers.

3.
Polymers (Basel) ; 15(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37896394

ABSTRACT

This study evaluates the effect of lithium salts on the structural, electrochemical, and thermal properties of cassava starch solid biopolymer electrolytes (SBPEs). Films of SBPEs were synthesized using plasticizing agents and lithium salts (LiCl, Li2SO4, and CF3LiSO3) via thermochemical method. The SBPEs with lithium salts exhibited characteristic FTIR bands starch, with slight variations in the vibration oxygen-related functional groups compared to salt-free biopolymer spectra. The RCOH/COC index (short-range crystallinity) was higher in the films synthesized without lithium salt and the lowest value was established in the films synthesized with Li2SO4. Thermal degradation involved dehydration between 40 to 110 °C and molecular decomposition between 245 to 335 °C. Degradation temperatures were close when synthesized with salts but differed in films without lithium salt. DSC revealed two endothermic processes: one around 65 °C linked to crystalline structure changes and the second at approximately 271 °C associated with glucose ring decomposition. The electrochemical behavior of the SBPEs varied with the salts used, resulting in differences in the potential and current of peaks from the redox processes and its conductivity, presenting the lowest value (8.42 × 10-5 S cm-1) in the SBPE films without salt and highest value (9.54 × 10-3 S cm-1) in the films with Li2SO4. It was concluded that the type of lithium salt used in SBPEs synthesis affected their properties. SBPEs with lithium triflate showed higher molecular ordering, thermal stability, and lower redox potentials in electrochemical processes.

4.
Polymers (Basel) ; 15(9)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37177142

ABSTRACT

The environmental problems generated by pollution due to polymers of petrochemical origin have led to the search for eco-friendly alternatives such as the development of biopolymers or bio-based polymers. The aim of this work was to evaluate the electrochemical behavior of a biopolymer composite made from cassava starch and cardol extracted from cashew nut shell liquid. The biopolymers were prepared using the thermochemical method, varying the synthesis pH and the cardol amounts. The biopolymers were synthesized in the form of films and characterized by cyclic voltamperometry and electrochemical impedance spectroscopy. The biopolymers showed a rich electroactivity, with three oxidation-reduction processes evidenced in the voltamperograms. On the other hand, the equivalent circuit corresponding to the impedance behavior of biopolymers integrated the processes of electron transfer resistance, electric double layer, redox reaction process, and resistance of the biopolymeric matrix. The results allowed us to conclude that the cardol content and the synthesis pH were factors that affect the electrochemical behavior of biopolymer composite films. Electrochemical processes in biopolymers were reversible and involved two-electron transfer and were diffusion-controlled processes.

5.
Acta Sci Pol Technol Aliment ; 18(1): 35-41, 2019.
Article in English | MEDLINE | ID: mdl-30927750

ABSTRACT

BACKGROUND: Coffee samples adulterated with roasted corn and roasted soybean were analyzed using a voltammetric electronic tongue equipped with a polypyrrole sensor array. METHODS: Coffee samples were adulterated in concentrations of 2%, 5%, 10% and 20% of roasted corn and roasted soybean; 5 replicates of each were used. The discrimination capacity of a voltammetric electronic tongue elaborated with a polypyrrole sensor array, was evaluated by principal component analysis and cluster analysis, while the capacity to perform quantitative determinations was carried out by partial least squares. RESULTS: The results obtained by the application of principal component analysis showed an excellent ability to discriminate adulterated samples. Additionally, the classifications obtained by cluster analysis was concordant with those obtained by principal component analysis. On the other hand, the evaluation of the ability to quantitatively analyze the adulterated samples showed that the polypyrrole sensor array provides sufficient information to allow quantitative determinations by partial least squares regression. CONCLUSIONS: It could be concluded that the voltammetric electronic tongue used in this work allows the suf- ficient analysis of coffee samples adulterated with roasted corn and roasted soybean.


Subject(s)
Coffea/chemistry , Electrochemical Techniques/instrumentation , Food Contamination/analysis , Glycine max/chemistry , Seeds/chemistry , Zea mays/chemistry , Cooking , Electrochemical Techniques/methods , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL